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UTILITARIAN APPROACHES FOR MULTI-METRIC OPTIMIZATION IN V LSI CIRCUIT
DESIGN AND SPATIAL CLUSTERING

Upavan Gupta

ABSTRACT

In the field of VLSI circuit optimization, the scaling of setonductor devices has led to the
miniaturization of the feature sizes resulting in a sigaificincrease in the integration density and size
of the circuits. At the nanometer level, due to the effectmahufacturing process variations, the de-
sign optimization process has transitioned from the detestic domain to the stochastic domain, and
the inter-relationships among the specification pararaditer delay, power, reliability, noise and area
have become more intricate. New methods are required toiegahese metrics in a unified manner,
thus necessitating the need for multi-metric optimizatidhe optimization algorithms need to be ac-
curate and efficient enough to handle large circuits. Asitteeaf an optimization problem increases
significantly, the ability to cluster the design metrics loe jparameters of the problem for computa-
tional efficiency as well as better analysis of possibledrafis becomes critical. In this dissertation
research, several utilitarian methods are investigatestdoation aware multi-metric optimization in
VLSI circuit design and spatial pattern clustering.

A novel algorithm based on the concepts of utility theory @sll minimization is developed for
variation aware multi-metric optimization of delay, povesrd crosstalk noise, through gate sizing. The
algorithm can model device and interconnect variationgpetident of the underlying distributions
and works by identifying a deterministic linear equivalenddel from a fundamentally stochastic
optimization problem. Furthermore, a multi-metric gatargy optimization framework is developed
that is independent of the optimization methodology, anmdmimplemented using any mathematical
programming approach. It is generalized and reconfiguraibidr that the metrics can be selected,

removed, or prioritized for relative importance dependipgn the design requirements.

viii
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In multi-objective optimization, the existence of mulBatonflicting objectives makes the cluster-
ing problem challenging. Since game theory provides a abftamework for examining conflicting
situations, a game theoretic algorithm for multi-objegtalustering is introduced in this dissertation
research. The problem of multi-metric clustering is foratet as a normal form multi-step game
and solved using Nash equilibrium theory. This algorithra hseful applications in several engineer-
ing and multi-disciplinary domains which is illustrated ity mapping to the problem of robot team
formation in the field in multi-emergency search and rescue.

The various algorithms developed in this dissertationeahsignificantly better optimization and
run times as compared to other methods, ensure high utitgls, are deterministic in nature and
hence can be applied to very large designs. The algorithmes be@en rigorously tested on the ap-
propriate benchmarks and data sets to establish their gffes feasible solution methods. Various
guantitative sensitivity analysis have been performediémiify the inter-relationships between the

various design parameters.
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CHAPTER 1

INTRODUCTION

The advances in science and technology impact the realmgmesring. The most important
facet of the technology evolution is that it facilitates thevelopment of improved products, and helps
in applying the knowledge and intelligence gained from oiseigline to advance other disciplines.
The important objectives in developing these products iammrporation of enhanced feature sets,
improvement in performance, and miniaturization. One wawchieve these objectives is to scale
down the dimensions of various constituent elements or compts of these products so that more
components can be integrated on it. Improvements in thécttimn technologies aid in achieving
these goals. However, the transition from one technologgl l® another is not rudimentary, and it
uncovers new concerns. In the context of very large scaégjiated computer aided design (VLSI-
CAD), specifically circuit optimization, these concerngs ¢e explained as follows.

With the aggressive scaling of semiconductor devices to#m®-meter level, the integration den-
sity of the circuits increases. According to the InterrmaioTechnology Roadmap for Semiconductors
(ITRS) [2], the feature sizes for the devices and intercotsill continue to scale down at the rate
of 0.7x per generation. This reduction in sizes affect theuif optimization process in several ways.
First, as the wiring density and consequently the aspeictsrat the metal lines increase, the cross-
coupling capacitance between the neighboring intercdargrows. This may result in an increase in
the interconnect crosstalk noise on a wire, due to the chiajgeted in it during the switching in the
neighboring nets. In the deep sub-nanometer designs, suglirty capacitance effects between the
adjacent nets can cause functionality failures causinghiéty issues [3]. The noise due to cross-
coupling capacitance is a dominant component among the soisrces, and hence is an essential
consideration during the circuit optimization processcd®el, the demand for power sensitive devices
has grown significantly in recent years. This is attribuethe remarkable growth of personal com-

puting and mobile devices such as laptop computers, cephlanes, music players and other portable
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devices that are predominantly battery driven. These devdemand high-speed computational func-
tionalities with low power consumption. However, as thegration density of transistors in a die and
the frequency of operations increase, the power consumptia die increases with each generation.
To maintain low power dissipation, supply voltage is scaledn. However, the scaling of supply
voltage is limited by the high-performance requirementsonder to maintain the performance, the
transistor threshold voltage should be scaled down to eehoev switching energy per device. Scal-
ing of threshold voltage significantly increases the subghold leakage current [4], resulting in high
leakage power dissipation during standby. Thus, at thensmometer level, power minimization is an
important metric in the circuit optimization process alomigh the performance metric. Hence, with
the scaling of technology, new paradigms that impact théopaance and reliability of the designs
become an integral part of the design and optimization m®ce

The inter-relationships between these optimization rmethave become more intricate in the
nano-meter regime. Optimization of one metric alone mawltés a performance shift from one
metric to another, thereby introducing sub-optimality lire tvalues of other metrics. As a simple
example, if some circuit optimization technique is empbtbyeth an objective of only power min-
imization, the resulting circuit configuration may potafiti have high interconnect crosstalk noise,
and hence low signal reliability. Alternatively, if the @pization is performed with the objective of
crosstalk noise minimization, the resulting design mayksotiow power dissipating, thereby affecting
the performance of the device. Addressing these aspectstiofipation are important considerations
in the next generation circuit optimization.

As the process technology is scaled down, the limitatioresstdumanufacturing processes and en-
vironmental noise, make the physical realization of devaed interconnects unpredictable during the
front-end design. During the fabrication of semiconductevices, the existence of non-uniform con-
ditions at the deposition and diffusion stages, or due tdithiéed resolution of the photolithographic
process, the parameters like oxide thickness, effectite lgagth of individual transistors and inter-
connect widths may not follow the specifications. Theseat@ms may result in dramatic changes
in the device performance characteristics, as well as tigbi@y of the designs. As a result, the
design and optimization problem has transitioned from tierministic domain to the probabilistic
domain [5]. Also, these process tolerances do not scalepropally, thereby increasing the relative

impact of process variation on the design process with easht@chnology node.
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This transition of optimization process to the stochastmdin affects the circuit optimization
process. Since, the stochastic optimization techniquesnherently slower than their deterministic
equivalents, the optimization process is adversely atedin recent years, the state of the art research
in VLSI design automation has addressed this issue. Sesietalt optimization methods have been
developed with an objective of centering the designs spatifins such that majority of the fabricated
circuits follow design and performance specifications. ahthese methods are based on the as-
sumptions that the variation sources of the componen#apecific distributions, such as Gaussian
distribution, identified during the preliminary analys& J]. However, recent research refute such
assumptions [8, 9]. Additionally, more sources of processation are becoming predominant as the
level of miniaturization is increasing, which is a prindigancern in the semiconductor industry.

As a result of technology scaling, more components are riated on the design area. Consider-
ing a simple example, the recent Intel Itanium®processmtiemamed "Tukwila’, released in 2008 is
a two billion transistor chip [10] manufactured with 65nnchaology. The total area of the chip is
699mnt as compared to the billion transistor Itanium "Montecithigwith a design area of 580nfm
Although the number of transistors have doubled, the clep &as increase only by 20%. Due to the
increase in the number of components, and consequentlyrofidem size, the optimization process
becomes significantly slow. In a general optimization peahlthe size of a problem can be reduced
by partitioning it into several smaller clusters, and perfimg optimization in each cluster separately.
However, the clustering problem is not elementary, and adigrtique developed specifically for clus-
tering of data objects in one knowledge discipline may natibectly applicable for clustering in other
disciplines.

In spatial pattern clustering, several techniques have begeloped for various applications in
a wide variety of scientific disciplines such as biology, goter vision and pattern recognition, and
communications and computer networks [11,12]. These tgquba are largely application specific and
perform single metric optimization. Hence, they may not pgliaable to the applications like VLSI
design partitioning, rescue robots deployment, ad-howorls establishment, and multi-emergency
resource management etc. Often, multiple competitive inseire required to be targeted for opti-
mization in these engineering domains. To understand tioislgm, we can consider a hypothetical
multi-emergency environment where an ad-hoc network oeaddescue personnel, resources etc.)

performing the rescue operations at different emergerstilans is to be established over a wireless
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link. Even though each node may have identical capabilitie® to the battery power constraints,
a subset of nodes are required to be identified that would sorsible for inter- and intra-cluster
communication. An optimal clustering mechanism must enthat the nodes, as well as the complete
clusters do not drop out of the network. A clustering perfednon the basis of one metric, selyster
compactnesfor low power dissipation in intra-cluster communicatiomgy result in a situation where
some clusters are too large and some are too small. The nfmmrarpower distribution among the
clusters in this case may result in a situation where theehyatif the nodes in smaller clusters may
soon get exhausted, and the nodes drop out of the systemwdtid result in loss of communication
from the emergency locations these nodes were servicing.

The exponential nature of such clustering problems quslifie application of heuristics based op-
timization methodologies. However, any heuristic appho@ay not be adequate for spatial clustering
in this domain due to some inherent characteristics of thesglems. First, the optimization metrics
here are often competitive in nature, and hence can not baiaptl using the classical heuristics based
optimization methods that perform a single metric optirticzg such as genetic algorithms, simulated
annealing etc. The clustering problem described abovegsept one such class of problems. The two
objectives, cluster compactness and uniform power digtdb are conflicting in nature and need to be
optimized simultaneously. Second, in several applicatiofthis type, each objective to be optimized
during the clustering process is critical. In terms of thestdring performance, this translates to a
situation where the success of a clustering methodologgdsrtained by the mutual satisfaction of
the optimizations corresponding to each objective in ttedlem. Formally, this metric of success is
termed as theocial fairnesg13] of the system. A concept widely studied and used in thd ¢
economics, social fairness of a system corresponds toatisituwhere each individual (or metric) in
the system is satisfied with respect to every other inditidutghe system, and the overall goals are
achieved. In this example, the social fairness of the jpamtitg mechanism for the ad-hoc network
clustering problem is maximized if both the objectives, pactness and uniform power distribution
are satisfied (optimized) with respect to each other. Theiahgatisfaction ensures that all the metrics
are considered with the same priority level, and at an dayuiln solution point, any improvement in
one metric can only be achieved by worsening the optiminatfoother metrics.

The speed of technology evolution decides the lifetime efgloducts. The lifespan of the prod-

ucts is shrinking due to rapid improvement in the manufaotutechnology. This entails the designers

4
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to identify and develop generalized optimization methoaisable of incorporating the design objec-
tives of the future generation products, and are applicablaultiple disciplines with relative ease.
The objectives may include examination of additional nestduring optimization, and investigation
and incorporation of the effect of randomness at severaldeWhe optimization frameworks capable

of addressing these issues effectively would be benefioiahe community.

1.1 Motivation

The issues discussed above give a strong intuition aboudrdidems that will be prevalent in the
next generation computer engineering research. Moregaigcin the VLSI-CAD, the technology
trends [2] suggest that with the aggressive scaling of ésvibe uncertainties due to process varia-
tions are expected to worsen in future. The dimensionalitthe circuit optimization process will
further expand due to an increasing impact of design commsragfecting the performance and relia-
bility of the circuits. Also, the multi-fold escalation ihé design density of the circuits is inevitable.
Thus, the circuit optimization methodologies capable afradsing only the problems occurring in
current technology generation may not scale well with the generation issues. The single met-
ric optimization methods that result in a performance ghiftn one objective to another and are not
generalized to incorporate additional metrics are no loageeptable. Hence, an important challenge
in the VLSI circuit optimization is to identify verticallysawell as horizontally integrated solution
methodologies [14].

Likewise, the existing methods in data clustering are inb#gof addressing the clustering require-
ments for various multi-disciplinary engineering applioas. Specifically, these applications require
methods capable of simultaneously examining multiple icgetturing clustering. Also, a clustering
method must satisfy the social fairness [13] from the paxtspe of each clustering criterion. This
would ensure that each clustering metric is satisfied wipeet to every other metric in the system.

The motivation for this dissertation is to explore the casuis in these problem domains, and

develop new multi-metric optimization approaches thailakthe following features.

e A framework that is generalized in its ability to incorpaany number of optimization metrics

that may be necessary to be optimized for feasible solutiotise problems. Also, the frame-
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work should be reconfigurable to enable relative prioritcraof the metrics to be optimized as

per the requirements.

e A domain independent approach that is easily portable teesible optimization problems in

several knowledge disciplines.

e An approach that is fast, scalable to larger problem sizagjrate in terms of optimizations,

and feasible to solve real problems.

e A method that is capable of addressing the impact of randemaeseveral avenues. In the
context of VLSI circuit optimization this property is extinely important for addressing the

impact of process variations in multiple design components

e An approach that is capable of inherently modeling the ralifective optimization problems

where the objectives are competing or conflicting in nature.

e A methodology that can guarantee the optimization is peréar from the perspective of each

metric, and hence satisfies the social fairness property.

Several flavors of utilitarian optimization methods haverbavidely applied to solve the problems
in the field of economics and finance [15]. In recent years, mder scientists have explored the
realm of utilitarian methods to solve various computer soée[16—-23] and computer engineering
[24—26] problems. The successful implementation of atiign approaches in these application areas
has benefited the engineering research community. Thisuesged us to explore these methods to

solve the problems in VLSI-CAD and spatial pattern clusigyri

1.2 Why Utilitarian Approaches?

The utility theoretic approaches are attractive as opttion methodologies due to some of unique
features and properties that they possess. The two vapéitte utilitarian methods are game theo-
retic optimization techniques and expected utility theloaged techniques. Game theory [27,28] is a
microeconomic approach for visualizing a problem as a stndhat consists of several players, each
player competing with all other players in the system anth¢ryo maximize its own utility or gains

from the system. In this competitive setting, an equilibripoint is identified that maximizes the
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utility of each player with respect to every other playertia game. Thus, the performance criteria of
the systems as a whole are determined by a combination ottffiermance criteria of the individual
agents. The salient features of game theory that serve ssn®#or application to the optimization

problems are:
e The situations of conflict and cooperation are most effettimodeled as games [29-31].
e Game theoretic models have simple and well defined enviratsvfer a variety of problems.

e A methodology likeNash equilibriumthat identifies a socially fair solution, perfectly comple-
ments the problems modeled as a game. The social fairnes® sbtution is a particularly

attractive feature from the perspective of multi-metriatsd clustering.

The expected utility theory [32] was proposed by Von Neumamih Morgenstern in 1944, as a sound
prescription for rational decision-making. This theoreeen widely studied and applied in the var-
ious fields of science and engineering like political scendinance, economics, computer networks,
and distributed computing. The success of utility theorgtisibuted to the fact that it enables the
designers (or decision makes) to visualize the optimingimblems from a different perspective. As
a simple example, let us consider a stochastic optimizgtiohlem in the mathematical programming
setting, where the objectives are to be minimized whilesgatig the constraints that are randomized
in nature. In the expected utility framework, this optimiaa problem can be conceived as an opti-
mization problem in which the risk of failure of constraigsminimized by maximizing the expected
utility of the constraints. In large scale stochastic optation problems, like those in VLSI-CAD,
this may help in substantially reducing the size of the mohlas well as translating a stochastic

optimization problem to the deterministic equivalent uncirtain situations.

1.3 Scope and Contributions

This dissertation explores the various optimization isscerrently existing in the VLSI-CAD
field, specifically at the circuit level. It also identifiesethoncerns for spatial data clustering from the
viewpoint of its applications in several multi-discipliyaareas. We identify the different metrics that
are required to be examined for pragmatic solutions to tpesklems. The state of the art research

is studied to evaluate the feasibility, portability andlabdity of the existing solution methodologies
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for next generation technologies and emerging researapliies. The generalized multi-metric
optimization frameworks based upon the utilitarian methaie developed to solve these problems.
The theme of this dissertation and the major contributioessammarized in Figure 1.1. A short

description of the research works that contributed to tesattation is as follows.

Dissertation
Theme

Multi-Metric Optimization

UL § An Expected Utility Theory Based Algorithm for Variation

] Aware Gate Sizing
(Objectives: Delay, Leakage Power, Dynamic Power, and Crosstalk Noise)

Contribution 2 An Integrated Framework for Variation Aware Circuit

> Optimization via Gate Sizing
{Objectives: Delay, Leakage Power, Dynamic Power, and Crosstalk Noise)

Contribution 3 A Game Theoretic Algorithm for Multi-Objective Spatial

> Data and Object Clustering
{Objectives: Equi-partitioning (Load Balancing), and Cluster Compaction)

Contribution 4 Robot Team Formation in Multi-Emergency Search and

—* Rescue Environments
{Objectives: Uniform Power Distribution, and Compact Partitions)

Figure 1.1 Scope and contributions of the dissertation. thme of the dissertation is to identify and
develop new multi-metric optimization methods for VLSIaiit optimization and spatial data and
pattern clustering.

e Expected Utility Based Optimization: Multi-objective apization of delay, leakage power, dy-
namic power and crosstalk noise in VLSI circuits is perfodm& gate sizing using a method-
ology that is based on the concepts of expected utility thaad constraint risk minimization.
It identifies a deterministic equivalent model of the statitaoptimization problem using the
concepts of bounded rationality. The methodology is vemmatistribution independent, and
identifies solutions with high levels of utility, in the perge of scarce information about the
distribution of the process variations. The method is ckgppabaddressing the impact of pro-

cess variations and randomness at several levels, botk whjbctive function as well as in the
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constraints. This approach effectively tries to minimize tisk of violation or failure of the con-
straints in the model, evaluated and controlled by an erpadtility measure that is maximized
to ensure that a constraint is satisfied. The deterministidahidentified using this approach is

especially attractive for optimization in large scale VEGAD problems.

Integrated Framework for Circuit Optimization: In this Wwora new variation aware multi-
metric gate sizing framework has been developed, which earséd to perform optimization of
several metrics like delay, leakage power, dynamic powet caosstalk noise etc. The proposed
framework is completely reconfigurable and generalizeerms of its capability to incorporate
new metrics and selectively prioritize the metrics depegdipon the design requirements, with
minimal changes in the model. More importantly, any math@abprogramming approach
can be utilized within this framework, to solve the optintiaa problem. The process variation
effects are incorporated as stochastic components in fag dedel. An important aspect of
the proposed framework is the identification of the intéatfenships between dynamic power,

leakage power, and crosstalk noise in terms of gate sizdsnadeling them in a unified manner.

A Microeconomic Approach to Spatial Data Clustering: A rnawellti-objective clustering ap-
proach that is based on the concepts of microeconomicsifisplg game theory, has been
developed in this work. This approach is capable of simelbasly optimizing multiple con-
flicting objectives. The methodology consists of three congmts, an iterative hill climbing
based partitioning algorithm, a multi-step normal form geatmeoretic formulation, and a Nash
equilibrium based solution methodology. The normal fornm4cooperative game consists of
randomly initialized clusters as players that compete liier dllocation of resources (data ob-
jects). The Nash equilibrium based methodology evaluatssldion that is socially fair for
all the players, and any mathematical hill climbing algumntcan be used to update the clusters

after each iteration of the game.

Robot Team Formation: The rescue robot teams formationlgmolin the multi-emergency
search and rescue environments is a practical applicatibie onicroeconomic spatial clustering
algorithm being developed. In these environments, robetfopming the search and rescue
operations in the field are required to be divided into teamseshe power dissipation in inter-

robot communication and the robot to base station commtioice high, while the robots are

9

www.manaraa.com



running primarily running on batteries, and each emergdmcstion is required to be attended
all the time. Dropping out of all the robots servicing a ldtgalvould significantly hamper the

rescue process. Thus, in this work, robot teams are creatdlaedoasis of cluster compaction
and uniform power distribution objectives to identify datralized robot teams with each robot
in a team closest to its communication gateway, as well ds taan is equally represented in

terms of its strength (battery power).

1.4 Outline of Dissertation

The remainder of this dissertation is organized in six olaptChapter 2 describes the background
and the state of the art research related to the problemg bdifressed in this dissertation. Specifi-
cally, a short tutorial of the important concepts in expéaislity theory, mathematical programming,
and game theory is presented. Also, the state of the artroedsegmathe field of variation aware circuit
optimization, and data and pattern clustering is describatbtails. In Chapter 3, a risk averse util-
itarian approach VLSI circuit optimization under scarce®imation about the process variations is
presented. This is a post layout gate sizing approach faii-mgltric optimization. Here, the expected
utility theoretic methodology is applied to convert thecstastic optimization problem to a determinis-
tic equivalent model. In Chapter 4, an integrated framevisoddeveloped for multi-metric optimization
of delay, leakage power, dynamic power, and crosstalk mmssidering the effect of process vari-
ations in the nanoscale VLSI circuits. This gate sizing feamrk is completely reconfigurable and
generalized to incorporate, remove or prioritize the rosttd be optimized. Chapter 5 defines the
problem of multi-objective spatial clustering in the cotitef novel multi-disciplinary application ar-
eas, and develops a novel game theoretic clustering digurithe different components of the game
theoretic modeling are explained in details and the sirarlatare performed to evaluate the efficacy
of the proposed method. In Chapter 6, the problem of robohsdfarmation in the multi-emergency
search and rescue environments is described. The gametibedustering algorithm being devel-
oped and discussed in Chapter 5 is adapted to solve thisgondiyy forming teams on the basis two
optimization objectives cluster compaction, and uniformavpr distribution. The concluding remarks
and the suggested future work in terms of extensions to thielgms addressed in this dissertation,

and other ideas for further refinements are given in Chapter 7
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we present a brief introduction of the uasiconcepts that form the basis for the
research described in this dissertation. Specifically, imeuds the expected utility theoretic approach
and the game theory approach. These approaches are usddetdhgomulti-metric optimization
problems in the context of VLSI circuit design and spatiaitgra clustering problems. The utility
theory is used for solving the VLSI circuit design optimipat problem, specifically, gate sizing.
Game theory is applied in solving the multi-objective pattelustering problem. Since, stochastic
and mathematical programming methods are used in the prd@adution, some background on these
topics is provided. We briefly introduce the various VLSkdiit optimization techniques available in
the literature, and present issue of VLSI manufacturingcgse variations effects in the nanometer
regime. A detailed discussion of the various related wodksVvLSI circuit optimization and spatial

pattern clustering is also presented in this chapter.

2.1 Utility Theory

A utilitarian theory forms the ethical framework for effag moral action. In this framework,
the measure of satisfaction is quantified in terms of thé&ywif the satisfaction, and is attempted to
be maximized by an individual. The utility is often measuesdthe happiness, as the satisfaction of
preferences, or the preference utilitarianism. The pbpby behind the utility theory is to achieve the
greatest good for the greatest number. Utility theory hanhesed as a framework to argue for the
value of different actions. Two primary variants of the ititheory in terms of the expected utility
optimization exist in the literature. In the first form, thadividuals, also known as the agents, try
to formulate and act under guidance of rules that maximigeutHity if they were to be consistently
followed. Alternatively, in the second variant, the goatasminimize negative utility rather than

maximizing the positive utility.
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The utility of an action or a state of environment maps théestaito a real number to describe
the degree of satisfaction from the state [33]. This notibiine utility has two important implications
in terms of the goals. First, the scenarios where the goals@mpeting or conflicting, the utility
function specifies the appropriate trade-off. Second, itliatgons where several goals are specified,
none of which can be achieved with certainty, the utilitydtion maps the likelihood of success of
each goal according to the weighted importance of the gddls.overall utility based system can be

represented by a simple diagram as shown in Figure 2.1.

--------- —/ —
Agent's | ’

. / _ System's L
| Satisfaction In -i """"" Current State
L Current State .
| I / 2
| . G
| | < Act T
 [Agentsuniy | | Agents Actn -
| | :
- - m
i | <
| Agent's 1 System’'s Next z
. | Satisfactionln |d:---=---=- T State 2
| New State | é
. z

! h 4 =

' What Should Be

R =TT -+ The Agent's >

Next Action? —_—
AGENT

Figure 2.1 A utility based system from the perspective oftemal agent. Depending upon the sys-
tem’s current state, the agent’s satisfaction from theerurstate, and the agent’s action, the satisfac-
tion of the agent in the system'’s next state is identified. ddrent chooses its future actions based on
the change in its satisfaction value due to its own actiolméngrevious state.

On the basis of the number of rational agents interactingpensystem, the utility theory can be
categorized as expected utility theory and game theory.hénexpected utility theory, the system
assumes a single agent playing a game against the natureeastia game theory, multiple agents

interact with the nature and against each other in an autonsmmanner.
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2.1.1 Expected Utility Theory and Risk Aversion

In an environment where the agents may not have completeotontaccess to the environmental
variables, a situation of uncertainty would arise. As am@xa, in the semiconductor devices fabri-
cated with the sub-100nm technology nodes, the enviroreh&attors may affect the manufacturing
process significantly, thereby causing inconsistencigharfabricated devices. The CAD engineers
are unaware of the degree of disparity between the spefisadnd the actual designs. This uncer-
tainty changes the way in which an agent (or designer) mak@sidns. In the presence of uncertainty,
the actions of the agents shift from deterministic actiortté preferences as a function of the outcome
probabilities of the actions. Trexpected utility functiomaps these preferences to real values.

An actiona of an agenA in the expected utility framework would have a set of pogsdaltcomes
(also known as state€);(a) as a consequence of that action. The indeanges over the set of
outcomes. Also, corresponding to each actpthe ageni assigns a probabiliti?(O;(a)|Do(a), K)
to each outcome. Her®o(a) is the proposition that the actianresults to the associated outcome,
given the agen#’s information or knowledg& of the environment. Thexpected utilityof an action

given the knowledg& of the system is given blgU (a]K) as shown in Equation (2.1)
U(alK) = Z P(Gi(a)|Do(a),K)U (Oi(a)) (2.1)

Here,U (O;(a)) corresponds the quantitative measure of the utility of tnie@meC; for the actiona.
According to the principle of maximum expected utility, tlagional agent should choose an action that
maximizes its expected utilitiEU. This notion of utility in terms of probabilities and the ocatnes
was proposed by John Von Neumann and Oskar Morgensterniml®®4 bookTheory of Games
and Economic BehavidiB2]. According to this theory, if an agent maximizes a tytifiunction that
correctly reflects the performance measure by which its\weehe being judged, then it will achieve

the highest possible performance for itself.

2.1.1.1 Expected Utility

The utility function maps the states to the real numbers. dthygtically, the utility of a state
could be any real number depending upon the agent’s chaiddsan arbitrary function. However, in

practice, the preferences of the agents follow a more sydtepproach. In a simple economic setup,
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the utility can be considered as a monotonic preferencdifmof the monetary values. According to
this definition, the utility of the action monotonically irases as the wealth increases in a gambling or
a lottery type of situation. However, the utility may not bkrear function of the expected monetary
value. This can be explained with a simple example. Supposegame of 'deal or no deal’, you have
already won $1,000,000. At this stage, the banker asks yyauifwould like to open one more case
that may have $3,000,000. If the case has $3,000,000, ybwinithe whole amount; otherwise you
will go home with no money at all. In such a situation, the etpd monetary value of the gamble is
0.5%$0-+ 0.5%$3,000,000= $1,500,000. This value is greater than your current earnings. Hewev
would you be willing to play such a gamble? This is a subjectjuestion, and it depends upon several
factors, including your current financial status withouw thillion dollars, the improvement in the life
style a million dollars can bring, and how much you value ttdittonal two millions if you already

have a million dollars. Thus, utility is not directly propi@nal to the expected monetary value.

2.1.1.2 Risk Aversion

Risk aversion is intuitively defined as situation where asrdgwhen faced with the choice of
comparable returns, tends to choose the less risky alieri@4]. In an expected utility framework,
this concept can be explained through the concave functiaphgshown in Figure 2.2. Her¥ is
a random variable which can take on two valugs,andx2. Consideringp be the probability that
x1 happens and (% p) be the probability thak2 happens. The expected outcolgx) = px*x1+
(1— p) *x2 is shown on the&X axis as a convex combination xf andx2. Considering ai: 0 — O
be an elementary concave utility function, as shown in g2, the expected utility is given as
E(u) = pxu(x1) + (1— p) *xu(x2) denoted byB, betweenA = (x1,u(x1)) andC = (22,u(z2)). Now,
by comparing point8 andD in Figure 2.2, it is identified that the utility of expectecome,u[E(X)]

is greater than expected utiligy(u), given by,

ulp*x1+4 (1—p)*x2] > p*xu(xl)+ (1— p)*u(x2) (2.2)

Now, we can consider the scenario shown in Figure 2.2 as ttieriles such that one payx) with
certainty and another payd or x2 with probabilitiesp and (1 — p) respectively. According to the

Von Neumann-Morgenstern utility notion, the utility of thiest lottery would beJ (E(X)) = u(E(x))
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u{x2) U(x)

ulE(x)]

E(u)

u(x1)

A J

X1 E(x) X2 X

Figure 2.2 A function representing the relationship betwerpected utility and risk aversion. In a
concave utility function, if the average returns for thergige situations of deterministic decisions and
probabilistic decisions are comparable, the expecteityuti the risk averse decisions is higher than
the risk centric decisions.

received with certainty and the utility of the second lotteould beU (x1,x2; p,1— p) = p*xu(x1) +
(1—p)*u(x2). In this situation, even when the expected income in botbriets is same, the obvious
decision for a risk averse agent wouldBgx) with certainty.

In a VLSI circuit optimization problem under uncertaintysianilar situation arises. The opti-
mization of the performance objectives can be improved bsemsing the risk of failure of the timing
constraints, thereby resulting in an increase in unrdiigluf the circuit. Specifically, in this paradigm,
the marginal utility declines much more rapidly as compacethe elementary utility function curve
as shown in the Figure 2.2. Thus, a stricter notiormeédratic utility functioncan be used in such

scenarios. The quadratic utility function [32] is given as:

u(x) = a4 Bx— yx? (2.3)

whereq, 3 andy are the coefficients of absolute risk aversion, derived &uate the utility function.
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2.1.2 Game Theory and Nash Equilibrium

Game theory can be defined as a collection of mathematicatisméarmulated to study the situa-
tions of conflict and cooperation between intelligent nagilodecision-makers. Game theory analysis
situations in which two or more individuals make decisidmst will influence one another’s welfare.
These decision makers, also known asleyers choose from a finite list of alternative courses of
actions, leading to well defined outcomes expressed in tefmgmerical payoffs associated with the
chosen course of action for each decision maker.

Formally, modern game theory began with the publicatiorhefdeminal book by Von Neumann
and Morgenstern in 1944 [35]. In 1951, John Nash describegqailibrium concept [36] for non-
cooperative games as a configuration of strategies thatemsuwin-win situation for all decision
makers. This concept of cooperation under non-cooperativeonments was phenomenal, and as a
result game theory has been successfully applied exténdivéhe field of economics, engineering
[25] [24] [16], and several other real life situations of t@n making under uncertainty.

The important elements of a game are categorized as plasteasegies, strategy sets, strategy
combinations, payoffs, information, and equilibrium. THayers are a set of rational decision makers,
each having a set of strategi§s= {s } available with them. A strategy is a rule that a player
uses to choose an action at each instance of the game. CGordasp to each strategy, a utility is
associated, which is represented as a payoff denoteld(by,---,sy) thati tries to maximize. A
strategy combination is an ordered set (si,---,Sy) that consists of one strategy for eachMf
players, and one such combination that maximizes eveneptapayoff in the game is identified as
an equilibrium point.

The idea behind game theory can be explained with the aidiotaresting and a classical example
of prisoners’ dilemmacConsider a situation where the police has convicted twagoter programmers
Robin and David in a case of critical data theft from the dasa&bof the company that employs them.
The police is assured that they are guilty, but they couldonate it since there are no witnesses. So,
the police is dependent upon the convicts' testimonies aatifly who is guilty. The police decides
to keep them in separate rooms for interrogation. The ctse given only two options, confess

or refuse. The police has decided to assign different pesdtbr the convicts depending upon their
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independent responses, as well the combination of the mespmf both convicts. The penalties for

different scenarios are as follows:

e If both convicts confess to stealing the data, the punishnseb years of jail term for each of

them.

o If one prisoner confesses and other refuses, then the confisggiven 1 year of jail term for his

truthfulness, and the one who has refused is penalized fgeafs of jail term.

o If both convicts refuse to accept their involvement in thefththen both of them are sentenced

for 3 years due to the lack of sufficient evidence.

Now, the situation before the convicts is complex, sinceg tten not communicate and decide what
they should be doing. Also, each of them is afraid of the &hmsition or standpoint. This situation

can be modeled as a matrix game as shown in Figure 2.3.

David
Refuse Confess
Y | |
Refuse ‘ y ' ’
b | us*
ﬂ & ! | | | | l ! ‘ | |
3 year 10 year 1 year

Robin“lll m
| & B

10 year 1 year 5 year

Figure 2.3 A simple example of two player non-cooperativenra form game. The prisoners’
dilemma in terms of the strategies (confess, refuse) anditfezent payoffs (1 year, 3 years, 5 years
or 10 years) are shown.

In this example, the two convicts, David and Robin, are tteyeis of the game. Each player
has two strategies, confess and refuse. The elements ofdtiexigame are the payoffs or utilities

associated with the strategies chosen by the players. leon@g, if Robin chooses his strategy of
17
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refusing to be involved in the theft, his punishment will dad upon the strategy chosen by David. If
David also refuses, then Robin will get 3 years of jail terrheneas if David accepts their involvement
in the theft, then Robin will be sentenced for 10 years in jdihe information available with each

player is the strategies available with the other player.trategy combination is a tuple consisting
of one strategy corresponding to each player in the game. sOcte strategy combination is the set
(confess, confess).

The solution of a game model is identified using an equilioriechnique. Nash equilibrium [36]
is one such technique that has been widely used to solve the ¢aeoretic formulations. Nash
equilibrium in a non-cooperative game setting is identifeeda point (or strategy combination) at
which no player can improve its utility by deviating from thgoint, considering the other players do
not deviate from that point. A Nash equilibrium in the prisesi dilemma game can be explained with
the aid of the Figure 2.4(a) — 2.4(c).

As shown in Figure 2.4(a), Robin, if refuses to testify thatwas involved in theft, would receive
a term of 10 years in the worst case scenario, and 3 years inetfiecase scenario. However, if he
confesses his involvement in the theft, would serve a terfydars in the worst case, and 1 year in
the best case scenario. Thus, to confess his involvemdr ahivious dominant strategy for him. This
is shown as the yellow shaded region in the figure. ConvictidDhasas the similar situation as shown
in the payoff matrix in Figure 2.4(b). With the similar setafjuments, it is logical for David to also
confess his involvement in the theft.

Now, if we take the dominant strategies of both the playéesfinal equilibrium strategy is identi-
fied, as shown in Figure 2.4(c). Here, the purple shadedmagaotes the intersection of the dominant
strategies of the two players. This point is precisely chilee equilibrium point, and the strategy com-
bination (confess, confess) is the Nash equilibrium sffatéit this strategy point, if David tries to
change its strategy from confess to refuse, while Robin taiimg his position of confession, David
will only loose and will get more years in the jail term. Sianilsituation occurs when Robin tries
to change his strategy unilaterally. Thus, at the Nash ibguiin point each player is satisfied with

respect to every other player in the game.
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(b) Strategies and Payoffs of David
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(a) Strategies and Payoffs of Robin

Refuse

Robinﬁ
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1 year
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(c) Nash Equilibrium Strategy Combination

Figure 2.4 Generation of strategy sets, identification efdbminant strategies, and Nash equilibrium
in prisoners’ dilemma game. In (a) and (b) the respectivateies and the payoffs for Robin and
David are shown. The Nash equilibrium strategy on the bastieodominant strategies for each
player is shown in the right bottom box of (c).

2.1.2.1 Classification of Games

Games can be classified on the basis of several differeatiaritSome of the important classifica-

tions of the games are given as follows.

e Number of players - 2-player (prisoners’ dilemma), N-plaffmite), and infinite player games

Number of moves and choices - finite strategy set and infitriétegjies

Degree of opposing interests - zero-sum games and gengnagiames

Degree of cooperation - cooperative games and non-codegames

Number of stages - one-shot games and repeated games
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e Time dependence - static games and dynamic games
¢ Involvement of probability - deterministic games and stmtit games

Here, we will discuss some of these classifications, spatifithe ones of our interest in terms of
solving the multi-metric optimization problems. To getal&td information on the other classification
criteria, the readers may refer to [27, 28]. In a classificatbased on the degree of cooperation,
the non-cooperative games consist of rational players sthgaheir strategies independently, with
nominal information of the strategies available with theestplayers. Each player plays a strategy
that is its best response to the strategy combination of tier players. Unlike cooperative games,
the coordination among the players is not forced externally is self-enforcing. In multi-player
situations, where external communication for cooperasaomplex, and hence impractical, the non-
cooperative games are pragmatic. Non-cooperative ganmebecéurther classified as normal form
or strategic games, and extensive form games. In the nowmal fames, players simultaneously
choose their strategies and a strategy combination thas gihe best possible payoffs to every player
is considered as an equilibrium point. Whereas, in the siterform games, the players move in a
sequential order, and the order of play affects the finalaut of the game. Since all the players
make their moves simultaneously in a normal form game, tloeyad get to learn each other’s private

information.

2.1.2.2 Mathematical Representation

A non-cooperative normal form game is a finite game if theestpasetss, - - - , Sy are finite. Here,
N is the set of all players in the game, afds the set of all the strategies of playierThe game is

being represented as:

G=(S,p);VieN (2.4)
Here, p; represents the payoff function for playieand is given as:
i Q

For the gameG represented by Equations (2.4) and (2.5), Mreuple of strategies;, - -- , s where
S €S, -, € S, is defined as the Nash equilibrium point®fif Equation (2.6) satisfiess € §
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andi=1,---,N.

*

pi(sb"' 3§y >Sl>il) > pI(SL >Si*71737§:rl"' 7S|i|) (26)

Quialitatively, Nash equilibrium is a socially fair, goodaiitly solution point at which every player is

satisfied with respect to every other player.

2.1.2.3 Critique of Game Theory

Although game theory has been widely studied and applieeviaral important application areas,

it is often criticized for some of its properties. The primaritiques of game theory are:

¢ Why non-cooperative games?: If the prisoners’ dilemma gbeileg presented above is revis-
ited, a natural question that arises is to why not play a catipe game? This is intuitive, since
in such a scenario, players may come out with a more advantaggrategy combination of
(refuse, refuse). The issue with cooperative games is thatich games the players need to
make prior commitments for cooperation. The prisoner€rdiina game (represented yyer
say) can be transformed into a cooperative game by a magpgugh thag(x) is another game
that represents the situation existing where, in additiothé strategy sets specified)neach
player would have some wide range of options for bargainiity the other players to jointly
plan cooperative strategies. In such situations the giyatet of each player would explode
and the game would potentially become inconceivable. Aerotbason for not considering a
cooperative game solution is the requirement of impartiditi@tor in cooperative games, who
could perform pre-play communication with all the playeefdsehand. In such situations, a
considerable amount of time is required for such arbitretjavhich is not pragmatic in solving

real engineering problems.

e Multiple Nash equilibriums and pareto optimality: The Nasjuilibrium for a game theoretic
model consists of all the dominant strategies. Howeverethray be multiple Nash equilibriums
in a game, and it is possible that several Nash equilibriurag not bepareto optimal[28]. A
solution is pareto optimal, if there exist no other solutibat can make at-least one individual
better off without making any other individual in the syste&mrse off. A good example for

such a situation is the Prisoners’ dilemma situation. Here dominant strategy and the Nash
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equilibrium point is the combination where both the prissneonfess their crimes, which is
reasonable from the players’ as well as the system’s peigpeconsidering that the players are
rational and non-cooperative. As evident, the solutioroisgareto optimal. The pareto optimal
solution point is (refuse, refuse). However, the paretonuglity would require cooperation
among the players, existence of focal arbitrator, and atmraformation, which is infeasible.
It is important to note that the criterion of pareto optirhalloes not ensure that a solution
is by any sense equitable and socially fair, which is an ingparcriterion in multi-objective

optimization.

2.2 Mathematical Programming

A mathematical programming problem is an optimization peol) wherein one seeks to minimize
or maximize a real valued function of real or integer vamablubject to constraints on the variables.

Mathematical programming studies the following propertéan optimization problem:
e The mathematical properties of the optimization problem.
e The development and implementation of the algorithms teestile optimization problems.
e The application of these algorithms to real world problems.

The mathematical programming is primarily performed tosedivo types of problems, continuous
and discrete. The continuous optimization problems coalddnstrained or unconstrained. To solve
the unconstrained optimization problems, several metlikdsnon-linear programming, non-linear
least square optimization methods, non-differentiablénmdpation methods and other global opti-
mization methods are applied. The constrained optimiaapimblems could be linear, stochastic,
non-linearly constrained or bound constrained. Sevegalrihms have been developed to solve such
problems [37]. The deterministic discrete optimizationtgems are solved using integer program-
ming methods. The stochastic optimization problems, wbahd be discrete or continuous problems,
are harder to solve, since they involve uncertainty.
Stochastic programming a framework for modeling optimization problems that imeouncer-

tainty. Stochastic programming methods take advantageed®ict that probability distributions gov-

erning the data are known or can be estimated. The goal hieréigl some policy that is feasible for
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all (or almost all) the possible data instances and maxsnilze expectation of some function of the
decisions and the random variables. More generally, suafela@re formulated, solved analytically
or numerically, and analyzed in order to provide usefulimfation to a decision-maker.

Stochastic programming is a widely studied and appliednapétion problem to the real world
problems since any real world problem almost invariablyudes some unknown parameters. Sev-
eral algorithms and solution methodologies have been dpedlto solve the stochastic optimization
problems. Chance constrained programming, two stagerlpregramming, multi-stage linear pro-
gramming, fuzzy mathematical programming and geometgamming are a few state of the art
methods to solve stochastic optimization problems. In gdrierms the optimization methods in this
discipline combine the power of mathematical programmititfy advanced probability techniques, to
attack optimization problems that involve uncertainty. @astraint or presumption in these methods
is that the probability distributions of the random paraengtare known, and cannot depend on the

decisions taken.

2.3 VLSI Circuit Optimization

In the nanometer era, the performance of a VLSI circuit isamby determined by the the delay or
the frequency of the circuit alone. The reliability, scdliah power dissipation, energy to perform a
function, cost, yield and the time-to-market the chips ése enportant performance metrics. The op-
timization of these metrics is thus an essential part ofgieésdy robust, reliable and high performance
circuits. The persistent push for higher performance aliahitty in much more complex designs has
led to an increasing interest in the optimization techrsqu€ircuit optimization primarily involves
tuning of various components of a circuit to achieve desiteahges in the performance metrics. The
components that can be tuned, include transistors, witdgerb, power supply voltage, and thresh-
old voltage etc. [38]. In addition to these continuous tgri@chniques, various discrete optimization
methods like buffer insertion, reordering of input pinsgamoice of gates from discrete libraries etc.
are also widely studied in literature. Since, in this dikg@n multi-metric optimization of delay,
power and crosstalk noise is being performed, the methadsatie effective for the optimization of

these metrics are reviewed. It is important to note thatdmméwork for VLSI optimization being de-
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veloped in this research is independent of the metrics #rabe incorporated for optimization. Other
performance metrics can be added in the model with mininfaftef

In a circuit, the maximum delay is defined as the total delatheflongest pathctitical path) in
the design. Some of the prominent techniques for delay nmmaition include gate sizing, transistor
ordering, defining alternative logic structures, bufferdrtion, reducing the voltage swing of the gates,
and interconnect wire sizing [39, 40]. In a gate sizing teghe, the sizes of the gates in the path are
adjusted to minimize the delay of the path. The sizes of thesga the entire circuit or a sub-circuit are
adjusted properly according to their capacitive loads fmfggmance improvement. In the transistor
ordering technique, the transistors are ordered in a rowoaietited in such a way that the sharing
of source and drain regions is maximized. This aids in redpthe total diffusion area and the cell
widths. Delay of a circuit can also be reduced by carefullylaeing logic structures in a circuit.
For example, a function like = ABCDEFGHbeing implemented using 5 two input NAND gates, 2
two input NOR gates and a NOT gate can be replaced by a eight MfND gate and a NOT gate.
Another effective technique for delay optimization is t@ént buffers in order to isolate the fan-in
from the fan-out, thereby reducing the load on the criticthpof the circuit. In the buffer insertion
technique, a series of cascaded inverters are insertedt@naannects between the gates. In a wire
sizing technique, the widths of the interconnect wires @edsto reduce the interconnect delays. The
techniques like multi-VDD assignment and threshold vatagaling have also been applied for delay
minimization.

Power dissipation in VLSI circuits is primarily due to twornponents; static power, and dynamic
power [41]. The dynamic power dissipation is due to two sesycwitching power due to charging
and discharging of load capacitance, and short circuit palue to non-zero rise and fall times of
input waveforms. The static power or leakage power disisipaiccurs when the device is not active.
The three components of leakage power are sub-threshdddgealue to current from drain to source,
direct tunneling gate leakage due to tunneling of electarrsoles from the bulk silicon through the
gate oxide potential barrier into the gate, source and dresubstrate and substrate reverse biased p-n
junction leakage. Several techniques have been proposediuce these components of power dis-
sipation. For dynamic power reduction, gate sizing, irdarect sizing, clock gating, supply voltage

scaling and buffer insertion are primary techniques.
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Dynamic power of the circuit is minimized by sizing down theges in the circuit. However, such
sizing technique increases the delay of the circuit. Inomeptimize both delay and dynamic power,
a path based technique can be applied, where gates in tloalcpiaths are sized-up and the gates
in the non-critical paths are sized down. Alternatively,l@bgl optimization can be performed with
delay-power trade-off. Wire sizing technique follows a g&mrelationship. If the width of the wire is
increased, the resistance per unit length of the wire deeseddowever, the line capacitance increases,
consequently increasing the interconnect power. In a dating scheme, the clock is masked such
that the switching activity of the idle blocks of the circistminimized, thereby reducing dynamic
power dissipation. This technique also reduces the clogkepdlissipation. Supply voltage scaling
minimizes the switching power dissipation. Since supplifage has a quadratic dependency on the
switching power, the technique is effective. In this methaither the supply voltage of the non-critical
part of the circuit can be lowered in a static manner, or tippluvoltage can be dynamically lowered
depending upon the performance demand of the circuit.

Leakage power minimization at the circuit level can be pented by applying techniques like gate
sizing, threshold voltage scaling, transistor stacking amaptive body biasing. Since the gate size is
directly proportional to the average leakage power of thie,gsizing the gate reduces the leakage
power of the circuit. Assignment of high threshold voltagsdme transistors in the non-critical paths
can reduce the sub-threshold leakage. The transistorirsgasiethod inserts extra transistors (sleep
transistors) connected in the series with the pull-up/daWn path of the gates and turns them ’'off’
during the standby mode. In adaptive body biasing, the fahlady bias (FBB) and the reverse body
bias (RBB) is applied to vary the threshold voltage of theadrstors, thereby turning them off during
the passive mode.

The coupling of a quiet line with one or more switching lineduces noise on the quiet line. If the
noise is high, the logic of the quiet line may switch causiogjd failures. This crosstalk noise can be
reduced by applying methods like wire sizing, wire spacimige shielding, sizing of the driver gates
of the victim and aggressor interconnects, and sizing ofébeiver gates of the victim and aggressor
nets [42,43]. If a wire is sized up, the resistance of the wiceeases, thereby reducing the coupling
effect on it. Alternatively, if the coupled wires are spadadher, the coupling capacitance between
them reduces, consequently reducing the noise on eachrof theéhe driver gate sizing, if the victim

net’s driver gate is sized up, the signal strength on themioet increases, resulting in a decrease in
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the coupling noise on itself. The impact is complementangesan increase in signal strength on the
net induces higher coupling noise on the neighboring netsilaly, up-sizing the receiver gate of a
victim net reduces the noise on the net. However, the effieaeiver sizing is significantly smaller
as compared to the driver sizing.

Several state of the art techniques for VLSI optimizatiompealiscussed here are effective, and
have been successfully applied for optimization of eithelayg power or crosstalk noise. However,
among these techniquegate sizingis particularly interesting due to several reasons. Gaiagi
is a simple, general purpose post-layout optimization @ggir that can be utilized to optimize all
the important metrics like delay, power, and crosstalk é0it does not require the incorporation
of any additional circuitry in the design, and hence incuigimum overhead. Gate sizing at the
post-layout level does not require any circuit re-routingoe performed. Also, driver gate sizing is
the most effective technique for crosstalk noise optinmzaf43]. Thus, we utilize gate sizing as the

optimization methodology for multi-metric VLSI circuit éimization, considering process variations.

2.3.1 Process Variations

The aggressive scaling of devices and interconnects, thigations of the manufacturing pro-
cesses, and the environmental noise affecting the manufagiprocesses, have significantly affected
the VLSI design paradigm, resulting in a transition of theige and optimization process from the
deterministic to the probabilistic domain [5]. Such efedegrade the quality of the signals and af-
fect the reliability of the manufactured circuits. Theseqass variations occur primarily due to two

factors.

e Environmental Factors: This includes the variations indglezessing due to the variations in en-
vironmental factors like temperature, power supply vatdgumidity, pressure, electromagnetic

interference, cosmic rays etc.

e Physical Factors: These include the variations in the etattand the geometrical parameters
caused due to imperfections in processing technologiesghotolithography, planarization,

metal etching, polysilicon etching etc.

The physical factors can be further classified as die-tgHiesical variations and within-die physical

variations. The die-to-die physical variations cause tioemsistencies between the different dies, but
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are largely uniform within each die. Due to which, these atewns are largely independent of the
design implementation and are usually modeled using vearst-design corners. The within-die vari-
ations are the variations in the device parameters withingdeschip. Due to these variations, different
devices at different locations on a single die may have miffedevice features. The variations in gate
dimensions within a die are an example of within-die vaoiagi

The within-die variations are caused due to three typesfette

e Random defects: The defects that are caused due to introdwétforeign particles in the wafer
during the processing. These defects can be introducedgdany step in the manufacturing

process, and can result in creation of opens or shorts in &meifactured circuits.

e Systematic defects: These defects occur due to sub-watkléthography process, and can be
controlled by incorporating tighter control during the pessing, and by applying techniques

like optical pattern correction.

e Parametric defects: Such defects occur due to variatiotkermanufacturing process. As
the process technology scales down, with the scaling of ¢éveced parameters like gate oxide
thickness, gate length, interconnect spacing etc., thadtngf parametric variations increases
rapidly. The relative impact of these defects for differezthnology nodes is shown in Figure

2.5.

Another aspect of intra-die variations is that these vianat exhibitspatial correlations where
the devices that are close to each other have a higher plbpalbihaving similar device properties
than those which are placed far apart. When coupled with tbeegs variations, these correlations
can cause prime reliability concerns. Hence, it is esdefttiathe design tools to account for the

uncertainties, and design robust circuits that are inseado the process variations.

2.4 Variation Aware Gate Sizing

Several approaches for the optimization of delay, leakayyeep dynamic power, and crosstalk
noise in the presence of device process variations havepyeposed in recent years. In this section,
we discuss the state of the art statistical static timindyaisa(SSTA) based and mathematical pro-

gramming based approaches for variation aware gate samtfe basis of their strengths, as well as
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Figure 2.5 Variation impact at different technology nodgk [As the process technology is moving
toward lower technology nodes, the parametric variatioesb&coming a dominant factor in deter-
mining the total impact of process variations.

limitations at the current technology nodes. The analysisthe next generation VLSI design chal-
lenges make a strong case, for identifying new methods fdti-metric circuit optimization of the

VLSI design problems.

2.4.1 Optimization Metrics

To analyze and optimize metrics like delay, power, yieldysstalk noise etc. in the presence
of process variations, several methods have been proposiae literature. Since, this problem is
addressed from a gate sizing perspective, the discussiestigcted to review only the variation aware
gate sizing methods. Gate sizing is a simple yet effectiglrtigiue for circuit optimization at the post-
layout level, where-in the objective is to identify the op#l drive strength of each gate in the design.
In Figure 2.6, a taxonomy of the recent works in gate sizitaggified according to the optimization

metrics and the methodologies is presented.

e Power Optimization: Several works can be found in the liteon power optimization with

gate sizing, such as minimizing leakage power [44—46], dyo@ower [47,48], and total power
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[49-52]. In [47], a dynamic power minimization method is posed with dynamic power

identified as a function of the gate sizes in a stochasticraroming model. Similarly, in [48],

the authors have proposed a fuzzy mathematical programmaised solution for dynamic power
optimization. Leakage power minimization under procesgtians is performed using SSTA
based methods [44, 45], in which continuous distributiors @opagated through the paths
instead of the deterministic values to find the closed forpressions for performance. In [46],
a method to estimate the leakage current variation due év-@ie and intra-die gate length

variations is presented.

Crosstalk Noise Optimization: The power optimization noeth are primarily single metric
models that do not consider the effect of gate sizing on athetrics such as crosstalk noise
of the circuits. At the post-layout level, interconnect pling effects can worsen the signal
strength, leading to logic failures. Several techniquesetiuce crosstalk noise have been pre-
sented in the recent years. In [42], the authors proposearljprogramming based formulation
for transistor sizing to minimize crosstalk noise in citsuin another approach [53,54], an yield
driven Lagrangian Relaxation based method identifies tipemrpound on noise for each net as
a noise constraint. The gates are iteratively sized-uptisfgdhe timing and noise constraints,
and a simple linear model is evaluated for crosstalk noisemization. In a recent work [55],
a stochastic game theoretic algorithm for post layout dalagertainty and crosstalk noise op-
timization considering spatial correlations [56, 57] isposed. The non-linear crosstalk noise
model used in this method is derived from [58], which acalyaidentifies a closer approxima-

tion of the crosstalk noise.

Delay Optimization: Additionally, the optimization of ahimportant metrics like delay, timing
yield and binning yield have also been discussed widely 29— However, this research is
largely one-dimensional in the sense that these methodsatigpaim at optimizing specific

metrics and often do not consider the fact that optimizing metric may negatively impact the

optimization of other metrics, leading to an inaccuratd\asis of the complete design.
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2.4.2 Optimization Methods

SeveralSSTA based approachbave successfully been applied for delay minimization etdyi
improvement problems [57, 62—64]. These approach inalitimodel delay and yield optimization
problems in a simple model. The SSTA based approaches, wapner the pessimistic worst-case
corner based modeling [61] by performing a mean-varianedyais for the total circuit delay. How-
ever, such approaches are essentially path based [65]raditionally applied to optimize a single
parameter. An assumption in a SSTA based technique is thabthplete information about the vari-
ation distribution of the design parameters is known, aedniethodology is based on such assump-
tions. Several works [6, 7] have assumed a Gaussian digtribiHowever, global sources of variation
follow a log-normal distribution more closely [8, 9] as coaned to the Gaussian distribution.

Mathematical programming based approactese been widely investigated in the literature for
optimizing several metrics. An important aspect of mathigabprogramming approaches for circuit
optimization is that any path based problem can be easilyertad to the node based equivalent with
some sub-optimality being introduced. A geometric prograng (GP) approach has been proposed
in [66] for delay optimization in the presence of processatams. Although, the approach is robust,
the objective function and the constraints are requirecetpdsynomial functions. Thus, modeling a
generalized optimization problem in a GP framework requaenverting each optimization function
and the constraints in a posynomial form, and the problenocénbe modeled for minimization of
objectives.

In another approach for dynamic power minimization unddéaydeonstraints [47], the problem is
modeled as a chance constrained stochastic program (C@GRYugh CCP techniques can transform
simple problems to their deterministic equivalent modgis,transformation is extremely difficult for
large scale problems. Also, the method is bounded by camiimdistributions, and requires a number
of operations to be performed iteratively at each node, thuaving higher run times. However, if
the variation distribution information is available, theetinodology can be modified to incorporate
multiple metrics for optimization. Alternatively, the stmastic programming based statistical opti-
mization techniques are reasonably fast, but more cortservia terms of yield, and hence provide
lesser savings in terms of objective function optimizadiolm a recent work [48], the dynamic power

optimization problem considering process variations lesbnodeled in a fuzzy optimization frame-
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work. Here, the stochastic parameters are modeled as furaers, and a crisp non-linear problem is
formulated to maximize the variation resistance (toleedruf the circuit. The problem is then solved
using commercially available optimization solvers. Thesghodologies typically aim at optimizing
specific metrics and often do not consider the fact that apting one metric can negatively impact
the optimization of other metrics, leading to an inaccueatalysis of the complete design. The La-
grangian relaxation based methods [53] are limited to ettipesizing, or down-sizing the gates for
the optimization.

A shortcoming in the proposed methods for gate sizing cenisig process variations arise from
the fact that several methods [43, 47, 48] incorporate tfezedf process variationslue to only one
design parameter, like gate sizes (due to channel lengthpgide thickness). The impact of inter-
connect variations, which can cause 12-25% variationsertithing of the circuit, depending upon
the design and implementation [67, 68] can not be ignoredeatieep sub-nanometer level. The pro-
cess variations can be modeled more accurately using caraptenon-linear models that incorporate
more parameters, and have higher accuracy [55]. The distah@ of such a modeling lies in the

implementation complexity.

2.5 Spatial Data Clustering

Spatial data clustering involves the grouping of objects aset of sub-groups in such a manner
that the similarity measure between the data objects walsnb-group is higher than the similarity
measure between the data objects from different sub-grdupesobject and data clustering techniques
find applications in a wide variety of scientific disciplin@sch as biology, computer vision and pattern
recognition, communications and computer networks, afafrimation systems. As a result, cluster
analysis has received significant attention, and sevesébruzed clustering methodologies have been

developed to satisfy specific application requirements12]L

2.5.1 Clustering Techniques

Object clustering is a well researched problem reportednsitely in the literature, including
several detailed survey papers. Jeiral. [11], and Scheunders [69] review clustering methods from

pattern recognition and image quantization viewpoint, leviolatch et al. [70], and Berkhin [71]
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identify methodologies from the data mining perspectiveanifarly, Murtagh [72], and Baraldi [73]
surveyed various hierarchical, and fuzzy and neural diugtealgorithms respectively. For a detailed
discussion and survey of different surveys, one is refaogd?2].

Clustering techniques can be classified on the basis ofaesriteria, such as the principles, type
of data, shape of clusters, form of final partitions, distanteasure, and the number of objectives.
Here, we will limit the discussion to partitioning of datadsen the basis of clustering objectives. The
three major groups of clustering objectives are compactomnectedness, and spatial separation.
The compaction objective attempts to identify clustershwitinimum intra-cluster variation. The
KMeans algorithm [74] is the simplest and the most widelyhmeatatical method used in this category.
Other algorithms include average-link agglomerativetelisg [75] and model based approaches [76].
Clustering with an objective of maximization of connectest ensures that neighboring data items
share the same cluster. The density-based methods [77]siagle-link agglomerative clustering
methods [75] implement this principle to identify clustergh arbitrary shapes. In spatial separation
based methods, the objective is to maximize the interetustparation. However, it provides little
guidance during clustering and may produce trivial resuldditionally, an important criterion that
has received significant attention recently in the domaidat clustering is equipartitioning or load-
sharing [78]. Load-sharing methodologies have been widedgarched in the field of distributed
systems [79, 80], but did not receive much attention in eliisy domain until recently. The new
application domains like ad-hoc networks [81,82] and emecy resource deployment require clusters
with almost equal number of data objects per cluster tofgdtie constraints.

From the clustering methodologies perspective, severaidies based technigques have been de-
veloped in addition to the mathematical clustering methamgies. This includes simulated anneal-
ing [83], evolutionary algorithms [84—86], tabu search][&hd ant colony optimization [88]. Also,
hybrid approaches that combine different algorithms haentproposed in literature [85] [84]. Such
techniques are primarily used for feature selection in pastised classification, and are largely lim-
ited to single objective optimization. The multi-obje&iclustering problem has been solved using

the following principles.

e Ensemble methods: Here, the initial ensembles are cregtetustering the data either mul-

tiple times using the same algorithm (with different iniiations or using bootstrapping) or
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using complementary clustering techniques [89]. Then,stilations are combined to create
ensembles using expectation maximization or graph bagaaghes [89]. However, such
posteriori integration of single objective clustering results do ngpleit the real strength of

simultaneous multi-objective optimization.

e Pareto optimization: A feasible solution is pareto optimahere is no other feasible solution
that is strictly better. Multi-objective pareto optimikat [86, 90] performs simultaneous opti-

mization of complementary objectives, and hence, is b#itar the ensemble based methods.

e Microeconomic methods: The situations of conflicting obijexs can be naturally modeled in a
game theoretic setting. The problems can be modeled in @fvank consisting of players with
conflicting objectives competing to optimize their utéii[27,28]. The game is solved using the
Nash equilibrium based methodology that identifies a slydiair solution. The social fairness

ensures that every player is satisfied with respect to eusr player.

Microeconomic approaches have been applied to a wide sipeatf problems in the domain
of computer science. Murugavet al. [25] developed auction theoretic algorithms in VLSI design
automation for simultaneous gate sizing and buffer insergroblem. Hanchate [24] applied game
theoretic concepts for simultaneous optimization of ienect delay and crosstalk noise through
gate sizing, while Gupta and Ranganathan [16] implemergedegheory for resource allocation and
scheduling in the field of multi-emergency management. it gpmputing, negotiating agents have
been used for leasing of resources using such models [21S2R]ilarly, Grosuet al.[23, 91] used
cooperative games and the Nash bargaining solutions fdrbatancing in distributed systems, and

Lazar [20] implemented auctions for optimal bandwidth ediigon in wired and wireless networks.
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CHAPTER 3

EXPECTED UTILITY BASED CIRCUIT OPTIMIZATION

Aggressive technology scaling has adversely affecteditbaitoptimization process in two im-
portant ways. The impact of process variations in sevenapaments, coupled with multi-fold in-
crease in the design complexity has resulted in a situatianhrequires the circuit optimization tech-
nigues to possess important features like accuracy of ggtian, incorporation of process variation
effects due to various sources in a single model, and fastuéige time. Also, in contrast to the
optimization techniques that are based on specific parametriation distributions (like Gaussian),
these circuit optimization techniques should be variatistribution independent. In this chapter, we
present a novel approach for circuit optimization in thespreee ofscarce informatiorabout the dis-
tribution of the process variations. This algorithm religgn the concepts of utility theory and risk
minimization for multi-metric optimization of delay, dymac power, leakage power, and crosstalk
noise, through the gate sizing technique. An important rdmrtion of this work is the identifica-
tion of adeterministic linear equivalemhodel from a fundamentally stochastic optimization prohle
ensuring high levels of expected utility. The algorithm iagks significant speedup in the optimiza-
tion process for large circuits. This algorithm can addtbesimpact of process variations at several
levels including device variations, interconnect vaga$ etc., and is independent of the underlying
variation distribution. Using the concepts of boundedoradiity, this method minimizes the risk of
constraint shortfall in a linear programming setup. Theeeixpental results indicate that the algorithm
is efficient, and a comparative study with an existing gatagitechnique shows that our method is

multi-fold faster as well as comparable in terms of the oation results.

3.1 Issues in Circuit Optimization

The scaling of process technology in sub-nanometer regame the apposition of Moore’s law

[92] has affected the realm of CMOS design and optimizatimc@ss. Due to the aggressive tech-
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nology scaling, the impact of device process variationstendesign process has aggravated, and
consecutively, reliability and performance of the fabgchcircuits have degraded. One reason for
such an effect is that, at the lower technology nodes, thenpetric variations in other design parame-
ters have sizable impact on the circuit performance. Famgka, in sub-65nm designs, in addition to
the gate size variations (oxide thickness, channel lentgik)variations due to interconnects and vias
have sizable impact on the design. Due to these variatibasy LS| design optimization process has
switched from the deterministic domain to the stochastimaio in the sense that the sizes of gates,
wires etc. are no longer a deterministic quantity, but nathéistribution. The state of the art research
in recent years has addressed the circuit optimizationesprimarily through the statistical static
timing analysis (SSTA) based approaches and mathematimgigmming approaches.

Various SSTA based approaches are variation distributigeddent, and several works have con-
sidered the variation sources of components as Gaussiaibuli®on [6, 7]. However, this assumption
has been invalidated by some recent analyses [8], accotdimngnich the process variations due to
different design parameters follow different distribuiso For example, in [93] the authors have iden-
tified that the global sources of variation follow a log-naimdistribution more closely as compared
to the Gaussian distribution. Hence, new methods for dimqtimization that are independent of the
underlying variation distributions need to be explored.

Another aspect of the rapid progress in the fabricationreldgy is the multi-fold increase in
the density of the VLSI circuits, resulting in larger and ma@omplex designs. This issue, although
independent, has a coupling effect with the process vaniatipact in the sense that it further worsens
the circuit optimization process. The stochastic optitnizatechniques are inherently slower than
their deterministic equivalents for obvious reasons. Thaggravated by the ever-growing size of the
designs, and presents the designers with a challenge dffidiesp optimization methodologies that
are faster, can address the effects of process variatindsgra yield efficient.

In the circuit optimization domain, the optimization of agie metric may introduce some sub-
optimality in the values of other metrics. Although, at hegtiechnology nodes, the impact may
be negligible, however, such assumptions are not true fioo4saale designs. Thus, a single metric
optimization that results in a performance shift from oneria¢o another is not practical at this level.

As a simple example, if an optimization is performed with jeotive of crosstalk noise minimization,
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the resulting design may not be low power dissipating. Thosther challenge in circuit optimization
is the quest for methods and solutions that are verticallyedsas horizontally integrated [14].

The study of the existing research in circuit optimizatiorthe post layout level, as discussed in
Section 2.4, raise similar issues that need to be addressil/eloping next generation optimization

methods. These can be summarized as follows:

e Most of the works perform a single metric optimization oheit delay, power, or crosstalk noise.
However, such optimizations are no longer adequate formater designs, and new modeling

techniques for multi-metric optimization are required todeveloped.

e Several methods assume the process variations to folldaircelistributions and are developed
to work specifically with those distributions. However, Buassumptions are not valid for sev-
eral variations sources. An important aspect of the nexegdion VLSI optimization is to

identify methods that are variation distribution indepemid

e The recent analysis on the variation distribution of théotas variation sources identify that the
variations do not follow the same distributions as were fified in the preliminary analysis.
Thus, the methods that are capable of performing optinoirainder scarce information about

variation distribution are desirable.

e Due to the increasing complexity and size of the VLSI cirguthe circuit optimization process
has become slower. Due to the process variations, the @gatiiom process has transitioned from
certainty domain to the uncertainty domain, adverselyctifig the optimization time. Thus, an
accurate and fast stochastic optimization technique thatlancorporate the impact of process

variations through a simple yet effective modeling is regdito be developed.

¢ With the increasing integration density, the sizes of thmeutis are increasing significantly. A
fast optimization method is thus required for practicaliiohs to the large scale VLSI design

optimization problems.

e With the scaling of technology, process variations in ott@mponents of design are rapidly
becoming evident. A modeling technique that can addressntpact of process variations

at various levels, without complicating the modeling wostile well for the next generation
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circuit optimization problems. A generic circuit optimin model capable of incorporating

the impact of parametric variations due to several factthus desirable.

In this work, we develop a novel expected-utility theorydzhsnethodology for optimization of mul-
tiple performance metrics through gate sizing techniquas &pproach effectively tries to minimize
the risk of violation or failure of the constraints in the nebdevaluated and controlled by an expected
utility measure that is maximized to ensure that a condtiairatisfied. The modeling assumes the
availability of limited information about the system, i.enly the mean, and standard deviation of
the process variation parameters is available, and notdiualadistribution. A linear programming
model is identified using these values, and is solved fonmgdtsolution. This methodology is capable
of coping with the scant information, evaluates a deterstimiequivalent model which is important
for large scale problems, and can address the variabiliseireral modeling parameters. The key

contributions of the algorithm are:

e Using the concepts of constraint risk aversion and minitrorait yields a deterministic equiv-

alent of the inherently stochastic optimization problerhjlevensuring high utility levels.

e Performs optimization in the presence of scarce informadioout the variation distribution. In
terms of scarce information, only the mean and the standewdhtibn, and not the complete

information about the underlying distribution are reqdire

e Performs simultaneous optimization of multiple metricheTmetrics considered in this work
are delay, leakage power, dynamic power and crosstalk .ndise inter-relationship between
these metrics in terms of gate sizes is identified and modeladnmathematical programming

model.

¢ Incorporates the impact of process variations due to ga#s sis well as interconnects.

The resulting deterministic problem is significantly fadtean the corresponding stochastic problem,
and achieves high timing yields. Also, high level of utilisyobtained by controlling the risk from
each constraint in the model. The process variation efeeaisthe randomness can be incorporated in
the model at various levels including the variations in thtegizes within the delay models, the inter-
connect variations, as well as the variations in objectivecfions. The impact of spatial correlation is

also modeled in the optimization methodology using a grigelecorrelation model [62].
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The rest of the chapter is organized as follows. The detalestription of the expected utility
based deterministic modeling of a general stochastic apdition problem is presented in section 3.2.
In section 3.3, delay, power, and crosstalk noise modeld uséhis work are briefly visited. The
models for delay and power have been adapted from literaiuiide a novel crosstalk noise model
has been developed in this research, and is discussed. @lstationship between the models in
terms of gate sizes is derived in this section. Section 34qmts the details of the transformation of
stochastic gate sizing problem to the equivalent detestitnodel. Experimental results for different

scenarios and sensitivity analysis of the algorithm patareere discussed in section 3.5.

3.2 Expected-Utility Based Modeling

In this section, the methodology to convert a stochastigyopation problem to a linear determin-
istic equivalent using the concepts of expected utility mmazation is presented. In this algorithm,
different possible scenarios for a random constraintfeation are analyzed in terms of the quadratic
utility function. The problem is then converted to a utilhyaximization constrained deterministic
model.

A general stochastic optimization problem is given by (3slipject to the random constraint (3.2),

along with the set of non-random constraints, and the ngatngty conditions.

n
min Z=% zsj;¥sj € S (3.1)
J=1

n
st. a;:Za;,-s,-ZbuVieM (3.2)
=1

Here,s; is the jth design parameter to be optimizegljs the weight (unit cost) of;, which by itself
could be a random valuejs; is a randonith constraint corresponding to the parame{esind, b; is

the random constraint satisfaction valigis the total number of design parameters to be optimized,
andM is the total number of random constraints in the problem.

Now, from (3.2), the critical random variable for the randoamstraint can be defined as:

ni = (& —bi)/bi;vi e M (3.3)
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where b is the mean value of ali;’s. Taking the first and second momentsgfwe get the mean for

the constraint as:

=}

ni=(Y ajsj—b)/bi (3.4)
=1

and the variance as:
n

o? < (1/b)%( leoi,-s,- +0p)? (3.5)
where,oj; andoy, are the respective standard deviationg;paindb;.

An effective way of controlling the risk of failure of a conaint is by maximizing the expected
utility of the constraint. The assumption of scarce infotiora states that only the mean and the
standard deviation values, and not the complete informalwout the distribution for each random
variable are available. Also, in the context of scarce imfation, it is assumed that thisk of failure
significantly existsi.e. the negative value of; can occur with significant probability, and thus our
goal is to minimize that by maximizing the utility value. lhe context of gate sizing problem, it
corresponds to the situations where the delay constraiataa met due to the variation effects, and
consequently affecting the yield. For the justificationsl #me detailed descriptions of the technical
information that follows, please refer to Ballestero’s @aj94].

The decision maker’s utility can be given by the standardicatec Von Neumann and Morgenstern

utility function [32] for n; as:

Ui(ni) = o +2Bni — yn? (3.6)
ni>0vieM
whereq, 3, andy are the parameters to be determined. In (3.6), there are plossible conditions:
¢ A shortfall wheren; < 0 and the constraint is not satisfied

e A zero shortfall wheren; = 0, and reflects a critical situation where the constraint orapay

not satisfy depending upon the randomness; of
e A surplus wheren; > 0, and the constraint is safely satisfied.

These possibilities and their utilities are pictoriallysdebed in Figure 3.1.
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Now, for a shortfall, the utility (3.6) decreases rapidlythe n increases, but the value is still
positive till a > 20n); —yr]iz. This interval is shown as 'bearable shortfall’ region igdiie 3.1. So, the
greatest bearable shortfaf];’, which is a very small value, can be expressed as a functitreahean

value ofn; (n;), given by

Ui(n;) = a+2pn; —yn;2 (3.7

o+ 2BAiM; — VA2 =0

where); is a positive parameter close to zero, since the greatesttideahortfall is a very small value.

From the first derivative of utility (3.6) with respectitp, we get

Ui (ni) = 2(B—yni) >0 (3.8)

As the utility monotonically increases withy (which is negative), less shortfall is preferred to more
shortfall.

In case of zero shortfall, the utility is given ly. At this critical point, the randomness gf
decides if the constraint is met or not. A surplus is thusgsrefl by the decision makers since the
zero shortfall is a random value at the edge. Smauirity margirin terms of small surplus is preferred.
However, a large surplus value is not good since it can adiyeasfect the achievement of the objective
goals. The security margin is shown as the shaded regioreifitiure 3.1. A utility maximization
function is derived by substituting the valuesooff3, andy in (3.6).

Now, if the first derivative of utility given in (3.8) is equed to zero for maximal value af;, we
get,

Nimax = Wi = B/Y (3.9)

Substituting the values in (3.7), we get

B/y=ANi%+ 2N, (3.10)
o/B = (AZNi% -+ 2WiAini) /Wi (3.11)
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Shortfall - | unbearable shortfall

Figure 3.1 Utility curve for a random function. The possibtenarios of shortfall, zero shortfall and
the surplus are shown here. The shaded region shows thetgenargin for random functiom,
whose value is maximized when the first derivative of the etgautility function is equated to O.

These values correspond to the greatest bearable shdth&athean, and the surplus of minimum

utility. Now, the overall maximum utility value can be desit¥ with respect to the mean value as
Uimax = Kini =~ ni (3.12)

The value of K is irrelevant here, since the utility valueustjan index. Now, Putting the valuesaf

B, andyin (3.6), we get the maximum utility as,

ni—a P2
o (A2 2¢iAin) (3.13)

Now, for a problem in which the shortfall is unacceptablectsas gate sizing, the utility for

shortfall is 0. Thus, in Figure 3.1, the bearable shortfedladimits to 0, and hence = Aini. Now,
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substituting this value in (3.13), we get
Yi =~ 2ni;asAj ~ 0. (3.14)

In the optimization problem, the expected utility (EU) faxolh random constrairg; is to be kept
at a high level to assure that the solution points are idedtifiy satisfying the constraints. This is

mathematically expressed in terms of first and second dimegaas:

EUi(ni) = Ui(ni) +0.50; (n;)o? (3.15)
= o+ (2gini — Ni%)y — o7y

A parameteiw, symbolizing the utility value (an index) can be introdudeste such that:

o+ (20N — Ni%)y— o7y > wla + (24N — i)y (3.16)

wherew is close to unity. The constraint (3.16) ensures that theebegd utility of the constraint is
close to unity, and is satisfied.

Now, solving (3.16) foio?, we get,

02 < (1— ) (3+ A2+ 4N (3.17)

<3(1-wni%;ni >0

This equation gives a clear relationship between the vegiand the mean in terms of expected utility.

These relationships are then utilized in identifying a datristic model, as discussed next.

3.2.1 Deterministic Modeling

In a mean-variance approach for the expected utility mazation problem, the general minimiza-
tion problem described in (3.1) is converted into an eqaeivamaximization function of the expected

utility, subject to the parametric variance constraintse €xpected utility maximization function can
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be given as:

n
max/\:C—Z:C—szsj (3.18)
=1

_ n
Here, C is a large positive constant. Alsd~= Z zjsj > 0, since no resource is free. Thus, the
=1

equivalent minimization problem becomes,

n

min ) zjs; (3.19)
22

subject to the following constraints,

e Constraints (3.17), as developed earlier,

icijsj +0p < \/(1— w)(3+>\i2+4>\i)(i ajsj — by) (3.20)
1= =1

>

< /31— w)( a.-_jsj—ti);Viem
=1

e Parametric variance constraint corresponding to the malue wbjective function,
n n o
D 075 <Py Zjs (3.21)
=1 =1

The parametep corresponds to the value obefficient of variationif that information is avail-
able. This information is required only in situations whia bbjective function itself has ran-

dom parameters.

e The set of non-random constraints, and the non-negatigitgitions in the original optimization

problem.

3.3 Parametric Models

In this section, we would present the models correspondingath optimization metric, delay,
leakage power, dynamic power and crosstalk noise. The @eldypower models have been adapted
from the literature, whereas a novel crosstalk noise modslldeen developed as part of this work.

This crosstalk model identifies noise as a linear functiothef sizes of the driver gates. The dis-
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cussion focuses on identifying a relationship betweenretinestrics, and formulates the mathematical
programming models required for optimization. Also, thgide level and interconnect process vari-

ation are briefly visited.

3.3.1 Delay, Process Variations and Spatial Correlation

Reducing the size of a gate (say, reduces the intrinsic gate capacitance of gathe power
consumption, and the fan-in load capacitances lfthe linear delay model [95], the delay is modeled

as a function of the gate sizes, as shown in (3.22).
di =aq — biS + G Z Sj (3.22)
jeto;

where,d; is the delay of gateé, s is the size of gate, ands; corresponds to the sizes of all the fan-
out gates of. The coefficientsy, b, c; are empirically determined by extensive SPICE simulations
for each gate in the standard cell library for all combinagiof sizes and fan-out. Specifically,
corresponds to the impact of channel lendth;¢) on the delay of a gate, angl corresponds to the
impact of oxide thicknesgd)on the delay. Thus, the delay model incorporates the impladévice
process variations.

The uncertainty due to parameter variations in gate sizemaeled according to (3.23), which is
expressed in terms of nominal delak)( and random parametexs andX;, determining the correlated

and independent variations respectively.
n
D=d+ Z diXj +dr X% (3.23)
=1

Here, X; models the principal components of correlated random bsawith the corresponding;
values evaluating the sensitivity of delag. ~ N(0,1) models the random component of variations in
all process parameters lumped into a single term daiglthe standard deviation in delay due to these
random variations. The magnitudedyfandd; is determined by extensive simulations.

In the linear delay model, only the process variation effégtthe gate sized {+ andtyy) are incor-
porated, but not the interconnect variations. The intanechvariations in today’s gigahertz designs

are high, and can cause up to 25% variation in the clock skeshawn in a paper by Liat al. [68].
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Also, these variations can not be incorporated in a simpfaimal-worst case type of analysis. So,
in this model, the effect of the interconnect variations @ddressed in a mean-variance approach at
the timing constraints level. The optimal delays identifilebugh an unconstrained delay minimiza-
tion as a first step in the optimization process are used agradmts for simultaneous optimization of
power and crosstalk noise. We incorporate a conservati%e \i¥iance around the mean of the best
case timing values, corresponding to the interconnecatran effects.

The spatial correlations are modeled using a grid base@lation model proposed in [62]. Ac-
cording to this modeling, the complete design is divided idifferent number of regions. The gates
that are in same region are highly correlated and the vaniafifects on all of them are similar, whereas
the variation effects on the gates that are in differentegjare different and are less correlated. These
effects are incorporated in (3.22) to evaluate the valuds ahdc;, approximating the variations in

channel length and gate oxide thickness respectively.

3.3.2 Leakage and Dynamic Power

The power models proposed in [51] for dynamic and leakageepave adapted in our optimization
formulation. The dynamic power dissipati®y(i) of a gatei in each clock cyclé. depends upon the
transition probabilityt p;, the power supply voltagé,q, and the load capacitantg¢ Load capacitance
on a gate is given by (3.24).

L=W+ 5 Gk (3.24)
k= (o]

whereW is the wire capacitance, ai(k) is the gate capacitance of the unit sized fan-out gate. The

equation for dynamic power dissipation can be given as §3.25

Pa(i) =tp; Ci(k)sVEy/ (2te) (3.25)

k= (o]

The average leakage power dissipat®(i) of gatei as a function of its size, and the transition

probabilities are given by (3.26).

R(i) =[S PG, 0li(i, )]s Vad (3.26)

r
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where, |, (i,r) is given as the leakage current of gatior the input patterrr, P(i,r) is the leakage
power for gate corresponding to the input patternh(fr) is the leakage current for the unit sized
gatei and input patterm, s is the size of gatg andVygq is power supply voltage.

From (3.25) and (3.26), it is identified that the leakage powe gate is directly proportional to

its size, and the dynamic power is proportional to the sunhefizes of its fan-out gates.

3.3.3 Crosstalk Noise

The coupling capacitance effects in the circuits are satistaand present a major threat to the
reliability of the designs. They induce crosstalk noise lo@ toupled nets leading to timing yield
failures. Although, the effect of crosstalk noise on a net loa reduced by using techniques like wire
sizing, wire shielding, wire spacing, driver sizing (vintiand aggressor), and receiver sizing (victim
and aggressor), the most effective technique for redutiagctosstalk noise at the post-layout level
is primarily driver sizing. In this technique, the drivingitg of the net (often referred as thietim
nef), and all other driver gates of the nets that have a couplifegteon that victim net (referred as
aggressor nejsare sized. The up-sizing of the gates increases the sigealgth on corresponding
net, and hence reduces the coupling effects.

Figure 3.2 shows a simple example of the noise on a net in éesigim-aggressor pair setting.
Here, G1, G2, G3, and G4 are the gates sizes, C1 and C2 areuplngocapacitances between the
wires, and Netl and Net2 are the internal resistances. Asstisd in [43], the major contributors to
the crosstalk noise on a net are the sizes of the victim d(i@d), and aggressor driver gates (G2).
If the size of the driving gate of the net is increased, theaigtrength on the net increases, thereby
reducing the coupling noise on the net. Also, if the size @&f dniver gate of the coupled net is
decreased, the noise on the victim net decreases. Howeebrdsewn-sizing will increase the noise
on the coupled net. Similarly, the up-sizing of the victinivdr will increase the noise on the coupled
nets. Thus, the sizing has symmetric effects on the coumes] and a gate is an aggressor as well as

a victim at the same time.
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Figure 3.2 A coupling structure with single victim-aggmspair setting. Here, G1, G2, G3, and G4
are the four gates, Netl and Net2 are the two nets, and C1 andr&&pond to the two half-coupling
capacitances between the nets. For the victim net, Netls®deivictim driver gate and G2 is the
victim receiver gate. G3 is the aggressor driver gate fofd et G4 is the aggressor receiver gate for
Netl.

The relationship between the sizes of the driving gates efctbupled nets is incorporated in

formulating a simple crosstalk noise model. Here, the tatissoise on a ndl; is given as (3.27)

N = F( Z (s—sj))¥s en (3.27)

jecoupleds

where,s is the size of the driving gate of the négtis the set of all the coupled nets corresponding to
i, ands; is the size of the driver gate of the coupled net imagate design. Hence, for every gate, the
noise on its fanout net is a function of the total cross-cogptapacitance on the net.

The effect of crosstalk noise in a circuit can also be minadiat another level by incorporating

the noise margin constraints in the model. These constraonitrol that the maximum noise a net can
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tolerate. In the present setting, the maximum tolerableenon nefj is given by (3.28).
Uj =H( Z (Ij —w))Vsc € coupleds;) (3.28)
k= 0j

where,l; anduy correspond to the minimum and the maximum size of the gatitahle in the cell

library.

3.4 Stochastic to Deterministic Gate Sizing

In this section, a relationship between the dynamic poveakdge power, and crosstalk noise, is
first identified as a function of gate sizes, and a gate sizipgaach is formulated in a mathematical
programming model. These metrics are incorporated in tfgztibe function, with the delay and noise
tolerance as the constraints. The impact of process vani@in different design parameters such as
gate size, and interconnects is addressed in the delayraintst Once the problem is formulated as a
stochastic model, it is converted to the linear deternmmisiean-variance equivalent model using the

results from the methodology discussed in Section 3.2.

3.4.1 Stochastic Optimization Problem

To formulate the objective function for the multi-metrictpization problem, a relationship be-
tween the leakage power, the dynamic power, and the crissiie is derived as a function of the
size of gates in the design. In section 3.3, we derived theladanships independently, which can be

summarized as follows:

¢ In Equation 3.25, itis identified that the dynamic power igiggon of a gate is primarily affected
by the total size of its fan-out gates in the circuit. Thus,daate (say), the total number of
gates its fan-in nets are connected to determine the impaloe @atei on the dynamic power
of the gates that are in its fan-in. Hence, the weight fomgjzhis gatd is proportional to the

number of gates that it is connected to in their fan-out.

e From Equation 3.26, it is shown that the leakage power of @ igadirectly proportional to the
size of the gate, and hence has a direct impact. So, inceetirsize of the gate would increase

the leakage power dissipation of the circuit.
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e The crosstalk noise on a net has an inverse relationshipthétisize of its driver gate. If the
driver gate is sized up, the signal strength on the net iseseaand hence the crosstalk noise on
the net reduces. However, the up-sizing of the gate has arsaleffect on the coupled nets.
By up-sizing the driver gates of the coupled nets, the naistheir corresponding output nets

can be reduced.

These performance metrics are now modeled in a single oalgdainction, which is optimized in the
presence of delay constraints. The impact of these parasraighe size of the gate is incorporated by
multiplying the dimensionless normalized coefficiekts, andg, referring to the impact of a gate size
on the leakage power, dynamic power, and crosstalk noigectgely. The coefficienk is directly
proportional to the size of the gate, and coefficiens a function of the normalized impact of the
gate size on the gates that are in its fan-in. So if a gaen the fan-out of a large number of gates,
the impact of up-sizing will be higher for the circuit. Howeveg is inversely proportional to the
size of the gate, and its normalized value is a function ofnlaimum coupling capacitance of its
corresponding net with the aggressor nets.

The objective function for the optimization problem is givay the following equation:
n
Minimize GS= Z(KS +vs —&s) (3.29)
i=

where,s is the size of the gate andn is the total number of gates in the design.

Now, to derive the delay constraints for the multi-metridimyization problem, the deterministic
best case delays for each gate in the paths are identifiedrformpéng a linear programming (LP)
optimization under the path delay constraints (3.22), &ednibise margin constraints (3.28). Since
delay optimization is the primary objective in any circystionization technique, the delay is optimized
as a pre-processing step. As shown in (3.30), the dedgy)(is the objective function, which is
minimized to identify the best possible circuit delay. Thesign constraints in terms of the node
delays in the paths form the constraints for the problemcifpally, the constraints ensure that a gate
i+1, that is connected in the fan-out of another galbas a delay greater than the total delay of the path
till gatei and the internal gate delay of The nominal (mean values) case delay coefficients are used

during this optimization. This deterministic optimizatigolution generates the delay specifications
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for all the paths in the design, which are used as constrarke next steps.

min tspec (3.30)

st. at(p)+d <atii1(p)VienVpeP

d=5(a-bs+6 Z Sj)
i€p jeto
li<s <uyVvien

where,at;(p) is the arrival time at the gaiein path p, d; is the internal gate delay of andat1(p)
is the arrival time at the next gate- 1 in the pathp. The valuesy;, andc are the mean parameter
coefficient values, anR is the set of all the paths in the design.

After the delays are calculated, the multi-metric optirticza problem is formulated for simultane-
ous optimization of crosstalk noise, leakage power, anduhyo power under delay and noise margin

constraints. The stochastic multi-metric optimizationlgem is given as (3.31).

n
min GS= Zi(Ki +Vvi—&)s (3.31)
i
st dp <tepe/pE P

dp=> (a—bis+ci Z Sj)
icp jetoi
Ni<UVienl<s <uVien

This optimization problem is stochastic in nature, sidgecontains the parametric variation coeffi-
cientsb; andc; corresponding to the gate size variations. Alggscis a random parameter since the
variations due to interconnects are not accounted. Thecorieect variations can be incorporated in
the model by consideringpecas a distribution rather than a number.

The next step in the problem is to convert this stochastiblpro into an equivalent deterministic
problem based upon the concepts of expected utility maxitioiz and risk minimization, discussed

in Section 3.2.
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3.4.2 Deterministic Equivalent Model

If the objective function contains random variables, thpested utility approach can be used to
transform the original stochastic optimization problenth® deterministic equivalent model, either by
minimizing the variance subject to mean value constraotfy maximizing the mean value subject
to the parametric variance constraints, as discussed iBdbations (3.18- 3.21). In the gate sizing
problem, this corresponds to the randomness in the pareswete and§. The equivalent objective

function for such modeling then becomes (correspondinggieaion (3.19)),

n —
min Z(x‘i Vi —&)s (3.32)
1=
wherek;, Vi, E_, correspond to the mean values of the parameters. In casenebndomk, v and¢,
the deterministic values will correspond to the mean values

The constraints for the new gate sizing problem under thecedaformation, and utility maxi-

mization scenario are derived as follows:

e The linear proxy constraints in terms of variance of the aamgarameters, corresponding to
the constraints derived in Equation (3.20). Please noterthtaiis work we have considered a
10% standard deviation in thgpecvalue from its mean value identified during the first step of
the optimization process. The approximation is more caagige than the one derived in [68].

A more accurate estimate can be incorporated without anyfivaiibns in the model.

Od, + Otepee < /3(1— ) (dp —Tsped; VP € P (3.33)
Od, = Z(Oai —Ob +Og s)
i€p jeto;

dh=Y@-bh+t Y s)
i€p

jetoi

The value of the utility maximization paramet@rcan be experimentally determined, and can

be kept at a high level of 0.9, 0.92 or even 0.95.

e The parametric variance constraint corresponding to trenmalued objective function is given
by,

n n _

-Zl(% +0y; — 0g)S < p_Z(K_H'V_i—Ei)S (3.34)
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wherep is the coefficient of variation. This constraint is requikady in situations where the
objective function also has random parameters (say randsitrparameters) in it. However, in
this work, the modeling does not consider the randomnesginbjective function parameters,
and hence this constraint is not utilized at all. If the caedfits in the objective function are
considered as random during the modeling, then experimentavith different values op

provides a complete frontier of the optimal solutions.

e The Non-random constraints, and the conditions correspgrid the available gate size ranges
are maintained.

Ni <Uj;Vien (3.35)

i <s <uy;Vvien (3.36)

Thus, the stochastic problem defined in Equation (3.31)pmwerted into a deterministic equiv-
alent multi-metric model given by Equations (3.32), (3,33).34), (3.35) and (3.36) which can be

solved using any linear programming optimization tool.

3.5 Experimental Results

In this section, we present the simulation results to vehfy efficiency, accuracy and efficacy
of this methodology. First, a sensitivity analysis is peried to evaluate the sensitivity of the ex-
pected utility assurance constani) (with reference to the timing yield and the optimization bét
metrics. The analysis helps in identifying the optimum eadui w corresponding to the optimization
requirements. The risk averse optimization algorithm @&ntbvaluated on the benchmark circuits for
optimization of different metrics and the execution timdsd the approach is compared with a re-
cently proposed device variation aware mathematical pragring based approach. The algorithm is
then used to perform single metric optimization, and thaltegre compared with the multi-metric op-
timization values to evaluate the relative impact of a gngktric optimization on the sub-optimality
introduced in other metrics. Finally, the impact of incaigang interconnect variations in addition
to the gate size variations in the algorithm is analyzeds Itriportant to note that this method has
been transformed from a path based approach to an equiveldatbased approach according to the

technique proposed in [47]. This controls the size of théjam to further improve the runtime and
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feasibility for large circuits. The sub-optimality introded due to the transformation is close to 2%

for circuits with 20 levels of logic.

3.5.1 Setup

The multi-metric optimization algorithm for gate sizingder process variations was rigorously

tested on the ITC’99 benchmark circuits. The setup corsist¢hree steps, as listed below.

e The RTL level VHDL net-lists of the benchmark circuits wenrdracted for generating gate
level Verilog files using théSynopsys Design Compiléool. These gate level Verilog files
and the TSMC 180nm Standard Cell libraries (LEF, TLF, DB &igtc.) were then used to
place and route the designs and generate the DEF files, dayl sdormation etc. using the
Cadence Design Encountéoolkit. The benchmark circuits were synthesized using TSM

180nm libraries since the lower level libraries were noilabée to us.

e The parasitic resistance and capacitance information ESiRE was extracted from the routed
designs using the Cadenkige N’ Ice RC extractor. This information was utilized for extracting
the coupling capacitance from the routed circuits. A PERIipsavas written to extract the

coupling capacitance information of each net with its tap¢hcoupled nets from the SPEF file.

e The delay coefficients for available gate sizes (1x - 6x) @mdduts of the standard cells in the
TSMC 180nm standard cell library were characterized udmegHSPICE simulations. Also,
the variations in gate sizing parameters were assumed t6%eo® the nominal values, which
were appropriately translated to the coefficieatd andc in Equation 3.22. A conservative
estimate of 10% variance for the interconnect variationthénbest case delay constraints was
incorporated in the model. The best case delays were idmhtifia pre-processing step, through

the unconstrained linear programming optimization.

After the delays, coupling noise etc. were calculated ferlienchmark circuits, the stochastic gate
sizing optimization problem was formulated. The algoritftunformulating the stochastic linear pro-
gramming model was programmed in C language. Next, the astichproblem was converted into
a deterministic linear programming equivalent model tgiothe expected utility maximization ap-

proach. The linear program was then converted to the stdddPL format, which was solved using
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the robust KNITRO [96] optimization solver. KNITRO usesédribr point and active set methods for
optimization and is capable of utilizing multiple processoThis solver is specifically designed to

solve problems with large dimensionality. A detailed sgsteow is shown in Figure 3.3.

Behavioral Description (RTL)

=

C

i ) :

E—> Synopsys Design Compiler

< Structural] VEDL

E_b Cadence First Encounter

& DEF, CAP, Verilog|Files DEF] File
=

SN SPICE Cadence
’g Simulations Fire N° Ice
E Delay} Coefficients v SPEF] File
w2

Formulate and Solve of a Linear Program for
Unconstrained Delay Optimization

Best Case | Delay (t,,..)

Formulate a Stochastic Program for
Simultaneous Optimization of Power and Noise
under Delay Constraints

Y
Convert the Stochastic Program into an Equivalent

Risk Averse Deterministic LP Model and Solve for
Optimization Using AMPL Solver (KNITRO)

Figure 3.3 Simulation setup for the risk averse gate sizjptization problem. The Synopsys and
Cadence tools are used to generate DEF, CAP, Verilog and 8REFRor each benchmark circuit.
These files, and the delay coefficientstf, c)determined by the extensive SPICE siimulations are
utilized in formulating the unconstrained linear prograimgnproblem, which is solved to evaluate the
best delays for each benchmark. The multi-metric stoahagtimization problem is then formulated
and converted to the equivalent risk averse deterministiblpm. These linear programming problems
are then solved using the KNITRO optimization solver.

55

www.manaraa.com



3.5.2 Sensitivity of Utility Assurance Constant

The expected utility constrained optimization processlves identification of appropriate value
for the parametew, which determines the utility of satisfying each constramthe optimization
problem. In the domain of circuit optimization, each coastr is critical, and hence the satisfaction
of the constraints is central to the optimization proce$sis[ the greatest bearable shortfall is kept as
zero. The expected utility assurance constamivaluates the utility of each constraint in the model.
Intuitively, a high value ofw would ensure that each constraint in the problem is critiaatl thus
needs to be satisfied. However, such a high value afay result in the under-achievement of the
optimization goals, whereas a low value would result in liaodity of the optimization process and
consequently the yield. To evaluate the consistency ofrthigtion, and to identify the optimum range
of values for the utility assurance constant, experimergevperformed on the benchmark circuits to
determine the average change in timing yield and the mgbtinization values.

The timing yield of a circuit determines the probability thize circuit satisfies timing constraints.
In this model, the best timing specificatidge is identified during the unconstrained delay optimiza-
tion, and is used as a constraint during the multi-metriénaigaition. In the risk averse mathematical
programming formulation with delay constraints correspog to each node, a high timing yield is
obtained since each timing constraint is satisfied. Howevéming value of the critical gates closer
to thetspecvalue is abccam’s razoywith a high probability of failure due to process variasaffects.
The timing yield of the circuit is higher if the differencetleen the maximum delay of the circuit
after optimization and the timing specificatiogpgg is large. Thus we evaluate the improvement in
the timing yield of the benchmark circuits for various valu®f w as (tspec— tmax) * 100/tmax, Where
tmax IS the maximum delay of the circuit after the multi-metridiopzation is performed. The graph
shown in figure 3.4 displays the timing yield improvementuesl for the benchmark circuits. The
results endorse the intuition that as thevalue decreases, the timing yield of the circuit decreases,
since the satisfaction of each constraint does not havehautility value, and thus may not satisfy,
which is the case for some designs (b11, b12, and b20) at litity ualues.

The effect ofw on the objective function optimization follows a countesrid. As shown in the
Figure 3.5, the objective function optimization values diifferent utility assurance constants)(as

compared to the values correspondingate- 0.99 consistently improve for each benchmark circuit.
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Sensitivity of Timing Yield as a Function of Utility Assurance Constant (w)
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Figure 3.4 Improvement in the timing yield of the circuits thfferent values oto. The timing yield
improvement is given as the percentage increase in theaiife betweemspec and the maximum
delay fmax Of the circuit after the multi-metric optimization is perfned.

This also follows the intuition, since the utility of eachlaye constraint for a lower value @b is less,
there is greater margin for optimization at the cost of diskection of the constraint. An important
step in this risk averse optimization process is to iderttity optimumow values based upon the opti-
mization requirements. A good option in the general ciropiimization domain is to use @ value
that provides at-least 98-99% timing yield, as well as idi@stgood solution points. In this work, we

have performed most of the analysis with the values ef 0.95, 092, and 090.

3.5.3 Risk Averse Optimization Results

To evaluate the optimization values for dynamic power, degkpower, and crosstalk noise in an
equally weighted multi-metric optimization setting ofghisk averse gate sizing (RAGS) methodol-
ogy, a comparative analysis with an existing multi-metuzZy mathematical programming method-
ology (FMP) [97, 98] has been performed. It is important téerthat since the fuzzy mathematical
programming method only incorporates the effect of prosesmtions due to gate sizes (constants
&, b, andg), the risk averse gate sizing method was also implementddomly device variations

for a fair comparison. The fuzzy mathematical programmipgraach is a three step process that
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Improvement in Objective Function Values as Compared to the
Values Corresponding to Utility Assurance Constant w = 0.99
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Figure 3.5 Percentage improvement in the optimization eftbjective function for various values of
w. The objective function improvements are compared withv/eilees obtained fow = 0.99.

first calculates the worst case and nominal case gate sizesyalith the optimal delays incorporated
as constraints in a similar fashion as this approach. Thekeyw are then used to formulate a fuzzy
non-linear program that is solved for optimization. Theufssfor two values of utility assurance
constantw = 0.90 andw = 0.95 are shown in the Table 3.1. The results indicate that thienza-
tion values obtained using the risk averse gate sizing ndéthcomparable to the fuzzy mathematical
programming results. On average, the improvement in mefiicnization values for each metric is
approximately equal to the FMP counter-parts doe= 0.95. The RAGS performed slightly better
than FMP in terms of metrics optimizations far= 0.90. However, an important aspect of the risk
averse gate sizing approach is the execution time of theitdgo As shown in last three columns of
Table 3.1, the algorithm execution time of our methodologjgignificantly less as compared to the
FMP method. The RAGS is 5.85 times faster than the FMP methioa = 0.90 and more than 6.4
times faster forw = 0.95. This is attributed to the fact that the RAGS method is glsistep linear
programming method as compared to FMP method which reqtlireg steps, and the last step is a
non-linear program. This is significantly important fordar circuits like b17 which have more than

21000 gates.
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This algorithm can be utilized to perform single metric opiation of the metrics depending upon
the design requirements. The metric to be optimized canibgtized by assigning a high weight vec-
tor to it. For example, if the designer intends to optimizéydeakage power, then the weight vector
corresponding t& is assigned as 1 where as the other megiendv in the objective function are
assigned as 0 and 0 respectively. However, during such watiion the improvement in the optimiza-
tion values of the corresponding metric comes at the costtadducing sub-optimality in the values
of other metrics. We have compared the results of singleieneptimizations for dynamic power,
leakage power and crosstalk noise, with the equally weihghiraultaneous multi-metric optimization
of all three metrics. The results of the average change iroptienization values for the metrics as
compared to multi-metric optimization in all three caseshiewn in Table 3.2.

The dynamic power dissipation for single metric optimiaatis lower than the multi-metric op-
timization (as shown in column 2 of Table 3.2). However, itriteresting to note that on average,
dynamic power dissipation is reduced at the cost of leakagepand not crosstalk noise. This trend
occurs due to the fact that during the dynamic power minitiuna fewer gates are resized from the
sub-optimal sizes (after delay optimization) as compaodddkage power optimization. This results
in a decrease in dynamic power, but the leakage power idyangaffected. When only leakage power
is optimized, the optimization introduces sub-optimafitymarily in crosstalk noise metric. This is
intuitive, since the leakage power is directly proportiottathe gate sizes, where-as the crosstalk
noise has an inverse relationship with the gate sizes. WHeesingle metric optimization for crosstalk
noise is performed, the gate sizing problem translatesdantmaximization problem. The reduction
in crosstalk noise as compared to the equally weighted fmétric optimization is notable (almost
47%). This is due to the fact that the maximization probletisBas the delay constraints much easily
as compared to the minimization problem. Increasing the gaes reduces the crosstalk noise, as

well as the gate delays. However, this increases the powsipdtion of the design by 30%.

3.5.4 Optimization Considering Device and Interconnect Vaations

In this set of experiments, both device level (gate sizejatians as well as interconnect varia-
tions are incorporated in the model, and the impact of iot@nect variations on the optimization of

objective function and the timing yield is analyzed. Theulssare compared to the scenario where

59

www.manaraa.com



multi-metric optimization is performed considering onlgtg size variations. The overall variations
due to interconnects are assumed to be 10% of the nominalvahses, and are incorporated in the
delay constraints by adding a variance of 10% to the optiralaydvaluestg,ed. The utility assurance
constantw is kept as ®2. As shown in Figure 3.6, the risk averse gate sizing metlogy ensures
that the timing yield of the circuit is not sacrificed, eveonuigh the optimization results are affected.
It is interesting to note that the in the presence of intemeoh variations, the timing yield for most
cases actually improves, since the methodology is risksayeand intends to satisfy the constraints

with high utility. Due to this, the optimization is advergelffected.

Effect of Interconnect Variations on the Timing Yield
and Optimization Values

10
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2 0 . ; . . . .
5 b11 b12 b13 b14 b15 b20 b22
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Benchmark Circuit

B Optimization results -- {(gate size + interconnect vanations) —

(gate size variations)}/(gate size vanatian)
B Timing yield improvement -- interconnect variations + gate size variations
O Timing vield improvement -- gate size vanations

Figure 3.6 Impact of interconnect variations and gate s@@tions on the optimization of the met-
rics. In these experiments, the interconnect variatiolmslQ®b variation from the mean value) are
incorporate in addition to the gate size variations. The@aiage change in the yield improvement
for the two cases (gate size variations and gate size armdamigect variations respectively), and the
corresponding percentage change in the objective funeitievement for the latter case (gate size
and interconnect variations) as compared to the formey (gate size variations) are plotted in the
graph. The value for expected utility assurance is kepi=at0.92.
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3.6 Discussion

In this work, a new algorithm for simultaneous multi-mewjgtimization of delay, dynamic power,
leakage power and crosstalk noise in presence of proceissioas and scarce information has been
developed. The algorithm is independent of the underlyigation distribution, and can handle the
impact of variations at several levels including variatiatue to gate sizes and due to interconnects.
This expected utility maximization based methodology ni®tiee problem in a mean-variance based
deterministic linear programming model, which optimizke bbjectives while ensuring high levels
of expected utility for constraints satisfaction. The ekpents conducted on the ITC'99 benchmarks
suggest that the algorithm is multi-fold faster than thes#xg mathematical programming algorithms
available in the literature, and ensures comparable opditioin results. Good optimization results and
timing yields are obtained when the utility assurance amisb is kept at the levels betweerd® and
0.90. A comparative study between the single metric and th&+mltric optimization reveals that the
improvements in a single metric are largely achieved byrpa@ting sub-optimality in other metrics.
This method is capable of incorporating more optimizatiogtnns like security and reliability etc.,
if the metric can be expressed as a function of gate sizeseriergl, the methodology developed in
this work is a fast, accurate, and efficient tool for nanelgost-layout gate sizing optimization for

complex circuits, where the complete variation distribatinformation is unavailable.
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Table 3.1 Comparison between equally weighted multi-rmeptimization of leakage power, dynamic power and crdsstalse for risk aware gate
sizing (RAGS) and fuzzy mathematical programming (FMP).

\ Comparison for Expected Utility Assurance Constantw = 0.90 \

ITC99 Number| Optimal tPerformance of RAGS as Compared to FMP | Exec. Time(ET) (secs) Speed-up
Benchmark| of gates| Delay (ns)| Dynamic Power| Leakage Powel Crosstalk Noisg RAGS FMP of RAGS

b1l 385 0.71 15.65% 18.75% -5.91% 0.53 2.35 4.43x
b12 834 0.36 5.86% 7.52% 9.44% 9.63 38.65 4.01x
b13 249 0.26 -3.95% -6.05% -2.69% 0.143 0.848 5.93x
bl14 4232 25 -5.42% -5.59% 9.31% 23 177 7.7x
b15 4585 3.43 -1.58% -1.26% 5.98% 54 213 3.94x
b20 8900 3.59 8.89% 9.75% -4.58% 97 713 7.35%
b22 12128 2.63 3.69% 4.08% 1.48% 145 978 6.74x
b17 21191 2.68 3.89% 1.79% -3.99% 349 2338 6.7x

Percentage Change 3.38% 3.62% 1.13% 5.85x

\ Comparison for Expected Utility Assurance Constantw = 0.95 \

b1l 385 0.71 13.40% 16.28% -7.49% 0.51 2.35 4.6x
b12 834 0.36 4.03% 5.33% 14.56% 8.38 38.65 4.61x
b13 249 0.26 -4.82% -7.59% 2.17% 0.131 0.848 6.47x
bl14 4232 25 4.66% 4.95% -9.20% 19 177 9.31x
b15 4585 3.43 -6.78% -6.46% 13.21% 49 213 4.34x
b20 8900 3.59 -9.12% -9.36% 0.82% 88 713 8.1x
b22 12128 2.63 1.50% 1.75% -4.66% 141 978 6.93x
b17 21191 2.68 2.53% 1.21% -2.34% 330 2338 7.08x

Percentage Change 0.68% 0.77% 0.88% 6.43x

t: The Percentage Change in the optimization of each metdomputed using the formul& Temp — E Tracs * 100/E Tracs
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Table 3.2 Comparison between equally weighted multi-roepitimization withw = 0.92 and single metric optimization for dynamic power, leakag
power, and crosstalk noise metrics.

€9

ITC'99 tDynamic Power Optimization Leakage Power OptimizationF Crosstalk Noise Optimization
Benchmark| *DP *LP Noise DP LP Noise DP LP Noise
b1l 33.05%| -7.21% | -9.57% | -5.90% | 36.94% | -22.37%| -11.73%| -13.09% | 29.49%
b12 35.87%/| -9.03% | -20.79% | -8.29% | 37.36% | -33.76% | -11.20% | -12.09% | 28.28%
b13 1.18% | -15.54%| 3.01% | -13.09%| 1.83% | 12.29% | -18.51%| -18.99%| 77.61%
b14 17.90%| -3.54% | 1.98% | -2.87% | 19.25%| -26.84% | -7.54% | -7.77% | 16.57%
b15 40.47%| -8.67% | -2.82% | -7.97% | 41.20% | -21.88% | -21.37%| -21.30%| 42.91%
b20 9.15% | -14.17%| 13.76% | -13.15%| 10.07%| -29.70% | -18.03% | -18.75% /| 76.01%
b22 18.07%| -11.49%| 6.45% | -10.83%| 19.33%| -19.25% | -13.24% | -13.84%| 57.59%
Average | 22.24%| -9.95% | -1.12% | -8.87% | 23.71%| -20.21%| -14.52%| -15.12%| 46.92%
t: Percentage Change in metric values when single metriaizattion for Dynamic Power is performed
t: Percentage Change in metric values when single metrimizaition for Leakage Power is performed
F: Percentage Change in metric values when single metrimmggattion for Crosstalk Noise is performed
*: Dynamic Power **: Leakage Power
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CHAPTER 4

INTEGRATED FRAMEWORK FOR CIRCUIT OPTIMIZATION

In the nanometer regime, the transition of the process t#ogy from one generation to the next
is contributing toward the identification of new metricsttiban significantly affect the performance
and reliability of the designs. Thus, circuit optimizatitethniques developed to address the current
generation VLSI optimization issues may not be applicablthé future generation optimization re-
guirements. Also, a wide spectrum of devices incorporat&Mtircuits as an integral part of the
design. The design requirements of these devices vary yiéielr example, mobile devices primar-
ily require low power dissipating design, while missiontical devices must ensure that the design
is reliable. Thus, there is a need for new horizontally andicadly integrated circuit optimization
solutions that are completely reconfigurable in terms ofntle¢rics to be optimized, the optimization
methodology to be utilized, and the relative prioritieshwithich the metrics are optimized. Thus, in
this chapter, a framework to optimize multiple performanuatrics in a unified manner is developed.
In this variation aware optimization model, a relationshgiween the optimization metrics (like dy-
namic power, leakage power, and crosstalk noise) as a @mofi gate sizes is incorporated in the
objective function. The delay values obtained from unaaiirs¢d delay optimization, and noise mar-
gins obtained from the coupling capacitance informatiamféhe constraints form the optimization
problem, which is then solved for simultaneous optimizatd multiple metrics. The framework is
independent of the optimization methodology, and can béemented using any mathematical pro-
gramming approach. Itis completely reconfigurable and iggized such that metrics can be selected,
removed, or prioritized for relative importance dependipgn the design requirements. This frame-
work is implemented, and tested on ITC'99 benchmarks fdediit combinations of multi-metric
and single metric optimizations of delay, dynamic poweakbge power, and crosstalk noise. The
results indicate that the approach identifies good solytmints, and is an efficient mechanism for

post-layout optimization via gate sizing.
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4.1 Need for Integrated Framework

In the nano-meter regime, the increase in density and codibylef the VLSI circuits has affected
the circuit optimization process in several ways. Firgd, ititer-relationships between the metrics like
delay, power, and crosstalk noise have become more imrinauch a manner that the optimization
of one metric may worsen the optimality of other metrics. §hhe optimization of a single metric
may no longer be adequate. Second, due to aggressive sahkngiring density and consequently
the aspect ratios in metal lines have increased, there-gyifyang the impact of coupling capacitance
between the nets. The crosstalk noise induced betweenuipéedmets could cause functional failures
in the circuits. As a simple example, if a gate sizing techaitgs aimed at only power minimization
of a given circuit, based on timing constraints, the resgltjate size configuration could potentially
have a high interconnect crosstalk noise.

According to the technology trends [99], these effects amzbrtainties are expected to worsen in
future, and optimization methodologies which result in egenance shift from one objective to an-
other will not be acceptable. From the VLSI circuit optirtina perspective, an important challenge
is to identify vertically as well as horizontally integrdtsolution methodologies [14]. This necessi-
tates the examination of new approaches that can simuliaheoptimize multiple design parameters
for feasible solutions to circuit design problems.

Another important aspect in nano-level VLSI design and thténgization process is to address the
effect of process variations, which introduce uncertaintyhe geometries of devices like gate sizes
(gate length, oxide thickness etc.) of the fabricated @iscuAs shown in Figure 2.5, at sub-100nm
levels, the intra-die parametric and systematic variateme comparable to the random variations [1].
The effects of layout schematics as well as parametric ti@mis increase significantly due to the
shrinking geometries. The uncertainty due to these matufag variations impacts the performance
characteristics and the reliability of the circuits. Aniapkzation model that does not incorporate the
impact of process variations could result in inaccuratdyais

In this work, we present a new variation aware multi-meteategsizing framework that can be used
to perform optimization of several metrics like delay, lag& power, dynamic power, and crosstalk
noise etc. This approach is completely reconfigurable amergéized in terms of its capability to

incorporate new metrics and selectively prioritize themgtdepending upon the design requirements,
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with minimal changes in the model. More importantly, any imesatical programming approach can
be utilized within this framework, to solve the optimizatiproblem. An important aspect of this
approach is the identification of the inter-relationshigsween dynamic power, leakage power, and
crosstalk noise in terms of gate sizes, and modeling thenumfeed framework.

In this framework, since delay is the primary objective ity @ircuit optimization process, it is
optimized with highest priority as a first step in the proceBlse delay values obtained from uncon-
strained delay optimization are then used as constraimisgitihe simultaneous optimization of other
metrics: dynamic power, leakage power and crosstalk ndise.process variation effects due to gate
sizes (channel length, oxide thickness) are incorporateide model, and a grid based model is used
to address the spatial correlation effects [62].

The state of the art research in VLSI design optimizationt tdwasider the impacts of process
variations has been discussed in details in the SectionfZhapter 3. The methods implemented for
optimizing various metrics has been studied and comparksa, fhe different mathematical program-
ming techniques available in the literature, their prapsrand limitations are reviewed in that section.
One of these, or any other mathematical programming metbggaonay be used as the optimization
tool in this framework, without any apparent modificatiortiie modeling. The readers might want to
visit Sections 2.4 and 3.3 again to follow the material pnése in the rest of this chapter.

The rest of the chapter is organized as follows. In Secti@n gingle metric mathematical pro-
gramming optimization models for leakage power, dynamiwerp and crosstalk noise are derived
on the basis of the parametric models derived in the Sect®mf3Chapter 3. The relationship be-
tween the design parameters in terms of gate sizes, ancetheiat/olved in modeling the problem in
a multi-metric optimization framework are presented intisec4.3. Also, a mathematical program-
ming approach that is utilized for optimization in this waskbriefly discussed. In Section 4.4, the
simulation setup, experimental results for various oation scenarios, and analysis are presented,

followed by a summary and discussion in Section 4.5.

4.2 Single Metric Optimization Models

An important step in modeling any problem in a mathematicagmmming framework is to

identify the relationships between the design parametArsiodel that relates the parameters in a
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simple yet accurate fashion improves the optimization @secboth in terms of the efficiency and
the applicability of the model. In this section, we presdmd general mathematical programming

formulations for optimization of each metric, delay, powaerd crosstalk noise.

4.2.1 Unconstrained Delay Optimization

Delay is an important optimization metric in any circuit iopization problem. Since a delay
optimized circuit has higher timing yield, the delay is coesed as the most critical metric to be
optimized in any generalized framework. In the presenceafgss variations at the nanometer level,
delay uncertainty can be reduced by performing unconstdaitelay optimization. The mathematical
programming model for unconstrained delay optimizatiagiven by equation (4.1). The noise margin
constraints that control the maximum noise a net can t@dras been derived in Equation (3.28). The

design constraints in terms of the node delays in the paths tiee constraints for the problem.

MiN tpec (4.1)
st at(p)+d <at i(p)VienVpeP

N <UiVien

4= (a—bis +c Z Sj)
icp jeto;
li<s <uyVvien

Similar to the Equation (3.30), tteg ( p) is the arrival time at the gaten pathp, d; is the internal gate
delay ofi, andat;1(p) is the arrival time at the next gaite- 1 in the pathp. U; is the upper bound on
the noise margin, andy; is the noise margin of the current net. The valbgs®ndc; are the uncertain
parameter coefficient values, aRds the set of all the paths in the circuit. The linear delay sldasl

adapted from [95] and has been described in Equation (3.22).

4.2.2 Power Optimization Under Delay Constraints

The power models proposed by Gao and Hayes [51] have beeteddapidentify the leakage

power and the dynamic power as a function of gate sizes intiemsa(3.26) and (3.25) respectively.
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These equations can be used to formulate the mathematagigpnming model for power optimiza-
tion under delay constraints.

From (3.26) and (3.25), it is identified that the leakage powe gate is directly proportional to
its size, and the dynamic power is proportional to the surmhefdizes of its fan-out gates. Hence,
using the linear delay model, the problem of leakage andmdim@aower optimization under delay

constraints can be given by (4.2).

min '21(9*3 +0x*S) 4.2

st. di < di(maxvien

li<s <uVien

where, 8 corresponds to the normalized impact (weight) of gate siz¢he leakage power, argl
corresponds to the normalized impact of the gate size orathénfgates of the design, and effectively
the dynamic power impact. Herd, is the delay of gaté, di(max is the upper bound on the delay
of gatei, according to the timing specifications in a node based maodsltotal number of gates in
the design, antl andy; are the minimum and maximum available gate sizes in the atdriidbrary,

respectively.

4.2.3 Crosstalk Noise Optimization Under Delay Constrairg

The relationship between the sizes of the driving gates efcthupled nets, derived in Equation
(3.27) can be incorporated in formulating a linear prograngnformulation for the crosstalk noise
optimization under delay constraints. Here, for every gatihe noise on its fan-out net is a function
of the total cross-coupling capacitance on the net. Songiwveveight vectog as a function of the
cross-coupling capacitance on the net, suchghate n, and§; > 0, an equivalent node based linear
programming model for crosstalk noise optimization by gi#¢éng can be formulated for maximizing

the weighted sum of the gate sizes, under delay and noisemtangstraints. The linear programming
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formulation for crosstalk noise optimization can be foriypatated as (4.3).

n
max Zais (4.3)
i=
N <UVien

i<s<uVvien

The problem is formulated as a maximization problem to min@nhe noise on each gate by maxi-
mizing its size, weighted by the impact of each gate on thestatk of each output net. Since, the
impact of sizing is symmetric on the coupled nets, the ofdtisimes of the gates are obtained that

would reduce the coupling effect.

4.3 Integrated Framework for Variation Aware Gate Sizing

In this section, a detailed description of the unified gaténgi approach is presented. First, we
discuss the various aspects of the objective function nmagigh which the relationships between the
three metrics, dynamic power, leakage power, and crosstafie are captured as a function of gate
sizes. The objective function should be reconfigurable endbnse that any metric can be inserted
or deleted, or weighted as required. Next, the integratachdwork is discussed, followed by the
mathematical programming formulation for variation awapgimization. Finally, we will briefly

discuss the process of converting a path based approactottedased approach, which improves the

runtime of the algorithm.

4.3.1 Obijective Function Modeling

In the context of gate sizing, the impact of the three desipammeters, leakage power, dynamic
power, and crosstalk noise as a function of gate sizes ispocated in the objective function that is

to be optimized. Specifically, the inter-relationship of three metrics is as follows.

e As shown in Equation (3.26), the leakage power of a gate ety proportional to the size of

the gate, and hence has a direct impact. So, increasingzfd®fsihe gate would increase the
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leakage power dissipation of the circuit. The componeksstlie input transition probabilities,

leakage current and the input patterns also impact thedegbawer dissipation of the circuit.

e The relationship between the dynamic power dissipationtlamdate sizes is shown in Equation
(3.25). The dynamic power dissipation of a gate is primaffected by the total size of its fan-
out gates in the circuit. Thus, for a gajehe total number of gates its fan-in nets are connected
to, determine the impact of the gaten the dynamic power of the gates that are in its fan-in.
Hence, the weight for sizing this gates proportional to the number of gates that it is connected

to in their fan-out.

e As discussed in the previous section, the crosstalk noise et primarily depends upon the
size of its driver gate and the sizes of the driver gates ofthupled nets. Hence, crosstalk noise
has an inverse relationship with the gate size. If the dgigate of a net is sized up, the signal
strength on the net increases and hence the crosstalk roige met reduces. However, the
up-sizing of the gate has an adverse effect on the coupled Bgtup-sizing the driver gates of

the coupled nets, the noise on those nets can be reduced.

These performance metrics can be modeled in a single olgektnction, which is optimized
in the presence of delay constraints. Hence, three dimaes® normalized coefficien ¢, and
&, referring to the impact of gate sizing on the leakage podgnamic power, and crosstalk noise
respectively are incorporated in the objective functiohe Toefficien® is directly proportional to the
size of the gate, and coefficieqtis a function of the normalized impact of the gate size on titeg
that are in its fan-in. So if a gatas in the fan-out of a large number of gates, the impact ofinpg
i will be higher for the circuit. Howeveg, is inversely proportional to the size of the gate, and its
normalized value is a function of the maximum coupling cé@pace of its corresponding net with the
aggressor nets. The higher the cross-coupling capacitatae higher is the coefficient value.

To incorporate the capability to select among the objedtivetions, three constants 3, andy
are multiplied to the coefficient8, ¢, andg, controlling the impact of these coefficients on the final
objective achievement. For example, if all the three objestleakage power, dynamic power, and

crosstalk noise are equally weighted, tles 3 = y= 0.33.

70

www.manaraa.com



The objective function is given by the following equation:

n

min _Zi(a*e*erB*(P*S—v*E*S) (4.4)

where,s is the size of the gatie andn is the total number of gates in the design.

4.3.2 Integrated Framework

After the objective function is identified as shown in (4 dk),integrated framework for the multi-
metric optimization is formulated. Figure 4.1 shows theleyel flowchart for the framework. During
the first step, a linear program is formulated, as shown i) (4vith the delay tg,e) as the objective
function, which is minimized to identify the best possibiecait delay. The nominal (best) case delay
coefficients are used during this optimization. This deteistic optimization solution generates the
delay specifications for all the paths in the design, whiehusmed as constraints in the next steps.

In the next step, any mathematical programming methodatagybe implemented to perform the
stochastic optimization by incorporating the delay caists (3.22) and the noise margin constraints
(3.28). The weighted coefficien8 ¢, and¢ are incorporated in the objective function, which allow
to incorporate the priorities for optimizing the metricxaaling to the designer requirements. The

mathematical programming formulation is given in (4.5).

n

min Zl(or9+[3<p— Y¢)s (4.5)
i=
st dp <tspe/p <P
N <UjVien
i <s <uyVvVien

d=a-bs+G Y s
jefoli)

After the problem is formulated in the mathematical progming framework, it can be converted into
a standard optimization language format (AMPL etc.), ands@ved using any linear programming

solver.
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Figure 4.1 Gate sizing framework for multi-metric circuptonization. Since delay is the primary
objective in VLSI optimization, it is optimized separataly the first step in the process. Next, the other
optimization metrics are simultaneously optimized by mpowating them in the objective function.
The objectives can be relatively prioritized.

4.3.3 Mathematical Programming Methodology

Any stochastic mathematical programming technique camberporated in the framework to
solve the multi-metric optimization problem, providedttki@e probability distributions for the inter-
die and intra-die variations are available. However, tra@uation and optimization of the distributions
is computationally intensive. This is attributed to thetfdat exhaustive Monte-Carlo simulations are
required to generate the probability distributions fort# parameter variations. In several cases, ap-

propriate empirical information is not available, thusdiesy to inaccurate approximation. However,
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it is possible for experts to predict the pessimistic cagnand optimistic corners for the different un-
certain parameters. Interval mathematics based techsgpah as fuzzy mathematical programming
technique can use such top level information to make beéeismns in such situations. Also, Buck-
ley [100] has shown that fuzzy programming based optinopatjuarantees solutions that are better
or at least as good as their stochastic counterparts, siegaedentify the supremum of all the feasible
solutions and not the averages. Thus, we choose the fuzzyematical programming technique as
the solution methodology to illustrate our framework.

Here, we will briefly present the methodology and the forrtiates. Algorithm Algorithm 4.1
shows the steps involved in the process. In the fuzzy mattiesh@rogramming method [48], the
parametric variations in the delay equation are modeledzzyfnumber triplets of the forny, b; — g,

b +g) and €, ¢ — h;, ¢ + h;). Here,g; andh; correspond to maximum variations for the coefficients
bi andc; respectively. The coefficieltty approximates the variation in effective channel lengty (),

whereag; approximates the variations in oxide thicknegg) (

Algorithm 4.1 Multi-metric gate sizing algorithm

Require: Parasitic information from SPEF File, Design variablesrfrOEF, CAP, and structural
Verilog files, characterized values for nominal and worsecdelay coefficients, b, andc.

Ensure: Optimal Gate sizes

1: Evaluate the nominal case delytJ by solving a path constrained linear programming formula-
tion, incorporating the nominal case delay coefficienthi@linear delay model given in Equation
(3.22)

2: Formulate and solve the nominal case multi-metric gategigroblem through a deterministic LP
formulation with noise and power objectives, and nominakazelay and noise margin constraints.
Also, incorporate the spatial correlations in the modebhthe problem

3: Store the nominal case results for noiblj and gate sizesS|.)

4: Formulate and solve the worst case multi-metric gate sipnotplem through a deterministic LP
formulation with noise and power objectives, and worst aeday and noise margin constraints.
Also, incorporate the spatial correlations in the modebhthe problem

5. Store the worst case results for noid,{) and gate sizesc)

6: Using gate size valueS,; and S, and the noise results,; and Ny, formulate a crisp fuzzy
non-linear program to maximize the variation paramgtamder delay and noise constraints

In the worst case optimization scenario, the maximum ptessiriations are assumed and a pes-

simistic approximation is performed, and the delay equasaiven by (4.6).

d=a—(b—g)s+(c+h) > s (4.6)

jefo(i)
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In the nominal case optimization, the delay equation isrgafollows:

d=a-bs+c > s (4.7)
jefo(i)
The nominal case (step 2) and the worst case (step 4) gatg figmulations for fuzzy programming
are given by (4.8) and (4.9) respectively. The spatial ¢atimns are incorporated in the modeling
by multiplying a constant multiplier to weight the variatyilimpact of a fan-out gate on the delay
of a particular gate. The farther the fan-out gate is, thesloiw the weight and hence the impact of

variations on that gate.

n

min Zl(or9+[3<p— Y¢)s (4.8)
i=
st dp <tspe/pc P
N <UjVien
i <s <uyVvVien

d=a-bs+c ) s
i)

n

min Zl(or9+[3<p— Y¢)s (4.9)
i=
st dp <tsped/p€P
N <UjVien
i <s <uyVvien

d=a-(b—-g)s+@+h) > s
i%30)

After the deterministic nominalg,¢, Nic) and worst caseS,c, Nwc) problems are solved for the delay,
noise and power values using a mathematical programmingrsahe noise and gate size values are
used for formulating a crisp non-linear programming mod#ding a new variation parametgy the

fuzzy optimization problem is formulated using the symraetelaxation method [101]. The gate
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sizing problem in the presence of process variations isngoye(4.10).

max A (4.10)
A(Swe— She) — GS+ Suc < 0,
A(Nwe — Nnc) — GS+ Ny < 0,
St. Dp <tspec VPEP

andDp =% (& — (b —gi*A)s

iep
+@+h=A) S s)
jefo(i)
where, the parametaris bounded by 0 and 1. However, for the gate sizing problermadler bounds
of range between 0.5 and 0.75 can be givemfoSuch a smaller bound is sufficient due to the dual
requirement of high yield and low overhead for the gate giziptimization in presence of variations,
and speeds up the procedure 2-3 times, without affectinditiaé¢ solution. Physicallyh can be
considered as the variation resistance (robustness) nyagiehe circuit, meaning the ability to meet
timing constraint even in the presence of variations. Hetiwe LP tries to maximize this variation
resistance. The noise and sizing constraints ensure tatalsstalk noise and the power are between
the worst case and the nominal case values. The variatistalese tries to ensure that the optimal
solution values are closer to the nominal case values, arschtinimizes the power and crosstalk noise
of the circuit. It has been shown in the literature [102—-10wit the fuzzy non-linear programming

solutions produce the most satisfying optimization resulthe presence of uncertainty.

4.3.4 Pathsto Nodes

An important issue in the aforementioned optimization peobis that it is intrinsically a path
based formulation. This issue can be addressed by conyeatipath based formulation to a node
based one, with each node corresponding to a gate [47]. lowsider two simple paths — ¢ and

b — ¢, wherea andb are the nodes corresponding to primary inputs @ad primary output node,

75

www.manaraa.com



then considering a dummy sink nodsuch that — s, the node based formulation can be gives as:

3
min le (4.11)
=
st. dy <t
db < tc

te+d. < tspec

where t; is the arrival time at andd;s are given by the linear delay model. The sub optimalityointr
duced due to this transformation is close to 2% for circuith R0 levels of logic. The sub-optimality
refers to the value of dynamic power obtained when comparttetpath based formulation. However,

this transformation significantly improves the runtime &mel feasibility of optimizing large circuits.

4.4 Experimental Results

In this section, we present the experiments conducted toaeathe performance of this multi-
metric optimization framework. The framework was rigogussted for optimization in various set-
tings like equally weighted multi-metric optimizationngie metric optimization, and adaptive multi-
metric optimization where the metrics are optimized witfiedéent priorities by assigning different

weight vectors to the metrics.

4.4.1 Simulation Setup

The multi-metric optimization algorithm for gate sizingder process variations was rigorously
tested on the ITC’99 benchmark designs. The simulatiorpdeddl three important steps. During the
first step, the RTL level VHDL net lists of the benchmark citswere extracted for generating gate
level Verilog files using the Synopsys Design Compiler tobhese gate level Verilog files and the
TSMC 180nm Standard Cell libraries (LEF, TLF, DB Files etatg then used to place and route the
designs and generate the DEF files, cell delay informatioruging the Cadence Design Encounter
toolbox. We synthesized the benchmark circuits using TSKGhIn libraries.

In the second step, the parasitic resistance and capazitaiocmation (SPEF file) was extracted

from the routed designs using the Cadence Fire N’ Ice RC @xiraThis information is required for
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extracting the coupling noise of the routed designs. TheFSl&Ewas then used to obtain the coupling
capacitance and resistance information of each net witlyigsessor nets using a PERL script that was
written to extract this coupling information for each netthwits top three aggressor nets. During the
third step, the delay coefficients for available sizes (1x) @&nd fan-outs of the standard cells in
the TSMC 180nm standard cell library were characterizedgudie HSPICE simulations. Also, the
variations were assumed to be 25% of the nominal values g®],were appropriately translated to
the coefficientsa, b andc. With all the information about the delays, coupling noise eavailable
for the benchmark designs, the nominal case and the worstgats sizing optimization problems
were formulated. These problems were programmed in C lagguwehich generated the optimization
models in the standard AMPL format. These extreme casegmabivere then solved using a Linear
programming solver called KNITRO. KNITRO is a robust noneglar programming solver for both
convex and non-convex optimization problems. Itis spedlifiadesigned to solve problems with large
dimensionality. KNITRO uses interior point and active seatthods for optimization, and is capable
of utilizing multiple processors. The solver is availabseagpart of the NEOS optimization [37] suite.
The optimal solutions of the worst case and the nominal cettimgs are then utilized to formulate a
crisp non-linear programming problem, and solved using KRD. A detailed flow of the simulation

setup is shown in Figure 4.2.

4.4.2 Optimal Noise Margins

Ideally, the noise margin is given as the difference betwdenminimum sized victim and the
maximum sized aggressor gates. This corresponds to themaaxcoupling impact on the victim net.
When the victim driver gate is sized at its minimum possilate ghe signal strength on the victim net
is very low. Additionally, if the aggressor net's driver gas sized up to the largest possible size, the
aggressor net’s signal strength increases, thereby inglaclarge cross-coupling capacitance, which
can affect the victim net’s signal integrity. Hence, a coaist to control the maximum tolerable noise
on a net is incorporated in the model.

The gate sizes considered in this simulation setup range &85 ° to 1.5e 6. Therefore, the

noise margin for a net can be given by (4.12).

N = (1.5e %) — (0.25¢ ) ~ (1.25%¢7°) (4.12)
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Figure 4.2 Flowchart for simulation setup. 180nm standatdlibraries have been used to extract the
required files for the ITC'99 benchmark circuits.

However, these ideal noise margins are not tight, and coafla¢apture the impact of coupling noise
effectively. Thus, experiments were performed to identifg optimal noise margins, by evaluating
the impact of different noise margin values on the objechivections. The experimental results are
shown in Figure 4.3. Here, if the noise margin is belo58°, the dynamic power is adversely
affected, even though leakage power and crosstalk noisareféected. Thus, after averaging the
effects of noise margin on the crosstalk, and the power,hagignoise margin constraint of@be

was identified. This tighter noise margin can efficiently imize the effect of coupling noise, and
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generate better solution points. These noise margins actassconstraint in the (4.9) to control the

crosstalk noise between the nets during the gate sizing.

Noise Margin Sensitivity

S
[N

o
(33

Normalized Impact
|
[

1.25 1 085 07 065 0.6 0.5
Maximum Noise Margin (S(aggressor) - S{victim))

B | eakage Power EEH Crosstalk Noise —&— Dynamic Power

Figure 4.3 Effect of different noise tolerance values ondpgmality of the objectives. Tighter tol-
erance values for the noise constraint derived in (4.12¢ lmen applied and their impact on the
leakage power, dynamic power and crosstalk noise has be#elto obtain a tighter noise margin
for the optimization process.

4.4.3 Determination of Timing Specification

In the first step of the optimization process, the circuitaglas optimized, since it is the primary
optimization metric. A node constrained linear programagrfulated using (4.1), and solved to
evaluate the best timing specifications for each gate in¢sggd. The noise margin constraints ensure
that the maximum tolerable noise margins are maintaineithgltine optimization process. However,
the delay optimization results in sub-optimal values fakkge power, dynamic power and crosstalk
noise. The optimal delay values identified during this sEapesas the constraints for the node delays
during the next steps of multi-metric optimization. Theiotl delay valuest{ped for the ITC'99

benchmark circuits are shown in the third column of Table 4.1
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4.4.4 Leakage Power, Dynamic Power, and Crosstalk Noise Qptization

We evaluated the optimization results when leakage powsiardic power, and crosstalk noise
are simultaneously optimized with equal priority € 3 = y= 0.33). The technological constraints of
node delays with delay values and noise margin constraifdag with the bounding constraints cor-
responding to minimum and maximum available sizes of theggaite used to formulate the worst case
and the nominal case optimization problems. For each oéthesblems, the respective characterized
linear delay coefficients, b, andc anda;, b_, andc; are incorporated in (4.9), which was solved using
the KNITRO solver. The deterministic nominal caSg:( N,c) and worst caseSy¢, Nwe) power and
noise results are then utilized in formulating the fuzzy meatatical program as shown in (4.10). The
solution of the crisp non-linear problem obtained usingkKhdTRO solver gives the optimizations in
the leakage power, dynamic power and crosstalk noise faritbeit.

The optimization improvements in dynamic power, leakagegrpand crosstalk noise as com-
pared to the sub-optimal values obtained during the deléiynggation are shown in Table 4.1. As
evident from the table, the multi-metric optimization riésware significantly improved over the sub-
optimal values from unconstrained delay optimization. ifeerporation of spatial correlations during
the modeling of the problem further eliminate the pessimiignreducing the effect of variations in

circuit elements that are not in the same grid as the curtentent.

Table 4.1 Improvement in the optimization of metrics for taaietric optimization with equal priority
(a =B =y=0.33), as compared to the values obtained during unconstraielkay optimization.

ITC'99 Number| Unconstrained Delay T Improvement in Metrics Execution
Benchmark| of gates tspedNS) Leakage Power Dynamic Power| Crosstalk Noise Time (secs)
bl1 385 0.71 12.75% 19.8% 28.1% 2.35
b12 834 0.36 14.18% 20.5% 34.76% 38.65
b13 249 0.26 57.5% 66.2% 59.98% 0.848
b14 4232 25 38.0% 17.92% 125.25% 177
b15 4585 3.43 25.63% 42.0% 42.35% 213
b17 21191 2.68 46.38% 57.33% 62.87% 2338
b20 8900 3.59 18.95% 21.57% 72.79% 713
b22 12128 2.63 14.57% 58.69% 59.41% 978

Average Savings 28.49% 38.0% 60.7%
t: Percentage improvement over the unconstrained delayiaption

A notable aspect of this method is the runtime of the algorithAs shown in column 7 of the
Table 4.1, the runtime for the algorithm is comparatively imr even 21000 gates designs. This is

attributed to the optimum modeling of the problem as a nodedb@pproach as compared to a path
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based approach. Also, selection of the optimization sgileys an important role in controlling the
runtime. KNITRO is a fast and accurate solver, availablebfath linear optimization and non-linear
optimization problems.

Next, a comparative study between the pessimistic worst aaslysis and the fuzzy analysis was
performed to study the effectiveness of the mathematiaa@rpmming technique being implemented
as a solution methodology for our framework. As shown in Feglu4, fuzzy mathematical program-
ming identified the solution points that significantly imped over the worst case values, and the
values were closer to nominal case analysis. The improvenieithe optimization are notable since

the average total power savings are more than 30%, and testallonoise improvement is more that

40%.
Improvement in Metrics as Compared to the
Worst Case Analysis
70
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Figure 4.4 Average improvement in the metrics values fouftiameous multi-metric optimization as
compared to the deterministic worst case pessimistic aigalyfhe metrics leakage power, dynamic
power and crosstalk noise are weightedias = y = 0.33 respectively.

4.4.5 Single Metric Optimization Results

This framework allows for selective optimization of the mied, depending upon the design re-

guirements. The metric to be optimized can be prioritize@$signing a high weight vector to it. For
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example, if a designer intends to optimize only the leakageep, the coefficients, 3, andy will

be assigned the values as 1, 0, O respectively. However, oiigrieakage power is optimized, the
crosstalk noise may be affected adversely. The impact glesimetric leakage power optimization
as compared to the equally weighted multi-metric optiniais shown in Figure 4.5. As shown,
when only leakage power is optimized, the optimization mesult in sub-optimality introduced in
other metrics, like crosstalk noise in this case. This igiiivie, since the leakage power is directly
proportional to the gate sizes. However, since the crdsatake has an inverse relationship with the
gate sizes, the noise may increase as a result of optimizadimce dynamic power is affected by the
size of the fan-out gates, if the gates sized during the tpakawer optimization are same as the ones
that affect the dynamic power, then dynamic power would edgoice. However, in the other scenario,

dynamic power would be adversely affected.

Comparison hetween Single Metric Leakage Power Optimization
and Multi-Metric Optimization
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Figure 4.5 Effect of single metric leakage power optimizatas compared to equally weighted multi-
metric optimization. For single metric optimization thetnes are weighted as =1, =0,y=0,
and for multi-metric optimization the metrics are weightett = 0.33 3 = 0.33 y=0.33.

We also performed experiments for single metric optimaanf the other two metrics, dynamic
power (with weightsa = 0,3 = 1,y = 0), and crosstalk noise (with weighiis= 0,3 = 0,y=1). The

results for single metric dynamic power optimization as paned to equally weighted multi-metric
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optimization are shown in Table 4.2. The dynamic power detgon for single metric optimization is
lower than the multi-metric optimization. However, an iegting observation in this scenario is that
on the average, dynamic power dissipation is reduced atdasieof leakage power and not crosstalk
noise. This trend occurs due to the fact that during the dymaower minimization, fewer gates are
resized from the sub-optimal sizes (after delay optimizgtas compared to leakage power optimiza-
tion. This results in a decrease in dynamic power, but thiealga power is largely unaffected.

When the single metric crosstalk noise minimization is @enked, the gate sizing problem trans-
lates into a maximization problem. The results for crokstalise minimization as compared to the
equally weighted multi-metric optimization are also shawTable 4.2. A notable improvement (al-
most 2x) in crosstalk noise as compared to the multi-meptiamization scenario is identified. This is
due to the fact that the maximization problem satisfies th@ydeonstraints much easily as compared
to the minimization problem. Increasing the gate sizesceslthe crosstalk noise, as well as the gate

delays. However, this increases the power dissipationeoflésign by more than 40%.

4.4.6 Results for Priority Based Optimization

The framework can be utilized for adaptive multi-metricioptation in situations where the de-
sign requires the metrics to be optimized with differenbpgties. In such scenarios, the coefficients
a, B, andy are assigned weights corresponding to the relative paeritWe performed the exper-
iments with two such scenarios. First, an optimization ifgrened with equal priorities assigned
to leakage power and dynamic power, while neglecting theaohpf crosstalk noise. The weights
were assigned as= 0.5, = 0.5,y = 0. The results for optimization were compared with the dgual
weighted multi-metric optimization scenario to identifyetpercentage improvement in the two met-
rics leakage power and dynamic power. Since the weights imereased by approximately 17% for
each metric, we evaluated if the optimality of each metriofes the same trend. The results for the
percentage improvement in metrics for the benchmarks asersin Figure 4.6. The average dynamic
power improvement was 11.1% and average leakage powervempent was 12.7%. Although, the
improvements were not of the same order, they were coheriéntive expectations.

Finally, to compare the three scenarios discussed in thi®se unconstrained delay optimization,

single metric optimization, and multi-metric optimizatiowe compared the leakage power values
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Table 4.2 Comparison of single metric dynamic power andstatls noise optimization with the
equally weighted multi-metric optimization values.

\ Dynamic Power Optimization =0, =1,y=0 |

ITC'99 T Improvement in Metrics
Benchmark| Dynamic Power| Leakage Powel Crosstalk Noise
b1l 13.49% -15.11% -12.02%
b12 8.02% -11.73% 2.88%
b13 13.62% -34.76% -6.66%
b14 5.00% -10.26 0.70%
b15 20.57% -10.82 2.30%
b20 6.42% -14.75 8.83%
b22 14.32% -6.74 25.30%

Average 11.64% -14.88% 3.05%
\ Crosstalk Noise Optimization =0, =0,y=1 |
ITC'99 T Improvement in Metrics
Benchmark| Dynamic Power| Leakage Powel Crosstalk Noise
b1l -19.66% -21.34% 143.20%
b12 -20.69% -22.38% 197.71%
b13 -35.91% -38.40% 106.84%
b14 -15.81% -16.11% 97.23%
b15 -19.15% -18.88% 183.50%
b20 -19.15% -19.81% 146.88%
b22 -10.01% -10.19% 111.26%
Average -20.05% -21.02% 140.95%
t: Percentage improvement as compared to
equally weighted multi-metric optimization

obtained during the single metric leakage power optimizatand the multi-metric optimization with
leakage weighted as = 0.3 with sub-optimal leakage power values obtained duringonsitained

delay optimization. The improvements in the metric are shawFigure 4.7. The results indicate
that the single objective optimization identifies most i values for the metric, followed by the
multi-metric optimization, which is intuitive. Howeverush optimizations introduce sub-optimality

in other metrics like crosstalk noise and dynamic power.

4.5 Discussion

In this work, a new integrated framework for variation awarelti-metric optimization has been
developed for optimization of several metrics like delegkage power, dynamic power, and crosstalk

noise. Any mathematical programming approach can be edilia implement this framework. In this
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Comparative Performance of Multi-Metric
Optimization Methods
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Figure 4.6 The improvement in leakage power and dynamic paten optimized with priorities
o =0.5,B=0.5, andy= 0 as compared to the scenario whare 0.33,3 = 0.33, andy = 0.33.
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Figure 4.7 Comparative study of leakage power optimizatiothree different scenarios, uncon-
strained delay optimization, single metric leakage powvminaization, and multi-metric optimization.
The coefficients corresponding to the metrics in multi-medptimization are assigned as= 0.3,
3= 0.45 andy = 0.25.

85

www.manaraa.com



work, we identify the relationships between the delay, égkpower, dynamic power, and crosstalk
noise metrics as a function of gate sizes and model them iifiadimanner. Additional metrics like
security, reliability etc. in terms of gate sizes can be rpooated in the optimization framework with-
out any modifications. The framework is completely recorfiple in terms of design requirements
to selectively optimize one or more metrics by assigningeymate weights to the metrics.

The experiments performed on the ITC'99 benchmark cirgodgcate that the equally weighted
multi-metric optimization achieves good results in termgjgtimizing the values of all the metrics.
Also, the weights assigned to each metric in the model areoappately linearly correlated with
the average improvements in the optimization values, andenean be used to prioritize the metrics.
Although, single metric optimization achieves maximumiisgs for the corresponding metric, such
an optimization introduces significant sub-optimality le tvalues of other metrics. Experiments and
comparative analysis of different optimization scenaadsocate the efficacy of this framework as a

generalized post-layout multi-metric optimization tool.
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CHAPTERS

A MICROECONOMIC APPROACH TO SPATIAL DATA CLUSTERING

In an optimization problem, as the size of a problem increaee most efficient way of solving
it is to form multiple partitions on the basis of certain erif,, and to solve each partition separately.
However, clustering is an optimization problem, since tdis are required to be identified on the
basis of specific objectives. In general spatial patterateting domain, several techniques have been
developed in a wide variety of scientific disciplines suctb@asogy, pattern recognition, information
systems etc. While these traditional disciplines focus ewetbping algorithms to perform single
metric clustering, various engineering and multi-disai@ty applications in emergency management,
computer networks, VLSI, and robotics entail simultanesxemination of multiple metrics for spatial
pattern clustering. In this work, we develop a novel mulijective clustering approach that is based
on the concepts of microeconomic theory. The algorithm rsodemulti-step, normal form game
consisting of randomly initialized clusters as playerg tmmpete for the allocation of resources (data
objects). A Nash equilibrium based methodology evaluatesliion that is socially fair for all the
players. After each step in the game, the clusters are updeieg any mathematical clustering
algorithms. Extensive simulations were performed on sdveral data sets as well as artificially
synthesized data sets to evaluate the efficacy of the diguoriThe experimental results indicate that
our algorithm yields significantly better results as comepato the traditional algorithms. Further,
the algorithm yields a high value for thairness indexwhich indicates the quality of the solution in
terms of simultaneous clustering on the basis of multipjecdtves. Also, the sensitivity of the various

design parameters on the performance of our algorithm iyzethand reported.

5.1 Spatial Data Clustering

Formally, the clustering problem can be defined as an opditioiz problem [12,90]: Given a set

of input patternsX = {x¢,---,X;j,--- ,Xn }, a positive integeK, a distance measu and a criterion
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functionJ(C,3(.,.)) onK-partitionC = {Cy,--- ,Cx } of X andd(.,.), wherex;j = (Xj1,Xj2,- - ,Xjd)" €
09, and eaclx;i is a feature in the feature space, partithinto disjoint set<Cy, - -- ,Cx (K < N) such
thatJ(C,9d(.,.)) is optimized (minimized or maximized). The different clisbg criteriad, and the
distance function$(.,.) define the various clustering objectives, which may be adirfty in nature.
As an example, the objectives like spatial separation andexxiedness follow an inverse relationship.
Similarly, the compactness of the cluster is inverselytegldo the equi-partitioning objective. Hence,
most of the existing clustering methodologies attempt tiinupe just one of the objectives that are
identified to be the most appropriate in that context. Thesiltein discrepancies between solutions
provided by different algorithms and could cause a clusgemethod to fail in the contexts where the
criterion is inappropriate.

The applications such as rescue robots deployment, ad-étworks, wireless and sensor net-
works, and multi-emergency resource management havesited the identification of new clus-
tering mechanisms that could simultaneously optimize ipielbbjectives, which may be competitive
in nature. As an example, let us consider a problem of estahknt of an ad-hoc network of nodes
that communicate with each other over a wireless link. Altftoeach node has identical transmission
and computing capabilities, due to power constraints,tetasare required to be created to reduce
the communication overhead. Each cluster should have &eclhead that is responsible for inter-
and intra-cluster communication. An optimal clusteringchrenism needs to ensure that the nodes do
not drop out of the network. Hence, clustering should begoaréd on the basis of multiple criteria;
compactness for low power intra-cluster communicatiown, egui-partitioning for uniform power dis-
tribution. These objectives are competitive in nature ageds to be optimized simultaneously using
amulti-objective clustering technique

In this research, we investigate a novel methodology thattifies optimal clusters in applications
with multiple conflicting objectives. This methodology ®ists of three components, an iterative
hill climbing based partitioning algorithm, a multi-steprmal form game theoretic formulation, and
a Nash equilibrium based solution methodology. Specificall this clustering mechanism, initial
clusters are identified using a mathematical approach (KsleaKMedoids) followed by a game for-
mulation with these clusters as players and resourceritittentifies a solution using the concepts of

Nash equilibrium. Since the objectives are convex in naaseshown in [13] a Nash equilibrium solu-
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tion always exists, and tries to achieve global optima. Atepending upon the problem formulation,
the complexity of the Nash equilibrium lies between P and N[

A brief review the existing clustering methodologies, tteious application domains of game
theory, and the applications of load-sharing are discuss&kction 2.5. The rest of the chapter is
structured as follows. In Section 5.2, we discuss the midindor identifying the approach for multi-
objective clustering. The clustering methodology is pnés@ in detail in Section 5.3. Experimental
results are presented in Section 5.4, followed by a disonssn the applications and the possible

future research in Section 5.5.

5.2 Why Game Theory for Clustering?

Traditionally, in data clustering, a single parameter isirojzed while assuming the other pa-
rameters as constraints. However, the clustering reqeinésrof multi-disciplinary applications have
resulted in the need for new multi-metric clustering methdd contrast to the ensemble methods that
effectively integrate the results of multiple single oltjee clustering methods, the fundamental basis
of game theory allows for the formulation of problems as mpldtinter-related cost metrics compet-
ing against one another for simultaneous optimization.almg theory, each player’s decision is based
upon the decisions of every other player in the game, and hepamize his gain with respect to
their gains. This results in identification of global gaiasd consequently an equilibrium state for
the system. As an example, in the process of clustering tteeatgects with an objective of maxi-
mizing partition compactness, often clusters are formeuh $bhat some partitions have few objects,
while others having many objects, resulting in a situatibpastition-imbalance. However, a cluster-
ing performed with load-sharing or equi-partitioning ageative could result in formation of clusters
with large intra-cluster distances. Thus, such situatemesconvex in nature, and can be successfully
modeled in a game framework. Also, as shown in [13], if thegfiafiunction in a game is convex, a
Nash equilibrium solution always exists and tends to idemfiobally optimal solutions [105]. This
is a good motivation for modeling the system in a game thaofetmework for simultaneous multi-
objective clustering.

A unigue property of game theory is social equity or sociahfsss [13], which ensures that each

player in the game is satisfied and the overall goals are eglacAs an example, for clustering on
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the basis of three parameters, compactness, equi-pairigioand connectedness, the other methods
identify solutions targeting the global objective as a fiort of these design parameters. However,
a game theoretic model ensures that each of these paransetptsnized with respect to the others.

For an elaborate discussion of game theory the readers fearia¢27, 28].

5.3 Microeconomic Clustering Algorithm

In this section, a detailed description of the game thenmdgorithm is presented. Initially, one
of the mathematical clustering methods (KMeans, in thiskjva briefly explained, followed by a
thorough discussion of the key components of the game thieom®del, and the model itself. An
alternative ensemble based post-mathematical partitjpgame theoretic method is also presented.
The section concludes with the analysis of complexity ofrtielel, and the proof of progression of
algorithm.

Certain assumptions have been made during the modelingegpritblem as a game theoretic
framework. Most of these assumptions are not restrictienims of the applicability of the model,
and can be discarded with no or very little changes. In thigdehahe objectives being considered
are compactness and equi-partitioning, but the methoglakgpplicable to any type and number of
objectives, conditional upon the convexity of the probl&rhe notations and terminology used in the

rest of the chapter are given in Table 5.1.

5.3.1 Mathematical Partitioning

The initial set of clusters is identified using one of simpleartitioning method KMeans. This
algorithm partitions a data set of sikkinto K clusters on the basis of minimization of the total intra-
cluster variation (TICV). The steps involved in the itevatKMeans algorithm are shown in Algorithm
Algorithm 5.1

Let{x;,i=1,--- ,N} be a set of data vectors such that {x1,--- ,Xq }. Define a booleaw for
i=21---,Nandk=1,--- K.

1 if ith vector belongs t&th cluster

Wik = (5.1)
0 otherwise
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Table 5.1 Notations and terminology. These notations age s the equations and algorithms de-
scribed in rest of the chapter.

N Total number of data objects in a data set

d Dimensionality of data set

K Total number of clusters

Enx Euclidean distance betwearandk, wheren € N andk € K

E Sum of the squared Euclidean distance

Ik Number of data objects in clustkyvk € K

lisear Number of data objects per cluster in equi-partitionedestata = [N /K|
L Sum of the squared load valués= zﬁzl(lk — ligeal)?

P Total number of playerd®® C K

D it player in a gamé&i € P

p_i Set of players in the game other than the player

R Total number of resource centei— K

r j!" resource center in a gartg;c R

r_j  Setof all the resource centers not in the current game

U; Total number of strategies of a playgr

S Set of all the strategies of player

s, uth strategy of the playep;; 8, € S andu=1,--- ,U

S Strategy set of all the strategies in the ga®e; {S,S, -+ , S}

S Setof all the strategy combinations of all players othentha

s, A strategy combination consisting of one strategy of alypta other tham;; s,' € S_;

K

Define a matriXW = [wy| such thatz wik = 1, i.e., a data vector can belong to only one cluster (hard
K=1

partitioning). Now, letcy = (1, - -+ ,Ckq) be the centroid okth cluster, where; is given by equation

5.2.

Ckj = == (5.2)

Then, the intra-cluster variation f&th cluster and the TICV based upon the Euclidean distance mea

sure is given by Equations (5.3) and (5.4) respectively.

N d
E(k)(W) = Wik (Xij — ij)2 (5.3)
i= =1
K N d
EW) = Z Wik (ij —ij)z (5.4)
k=1i= =1
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The objective of the KMeans clustering is to identify thestérs that minimize the sum of squared

Euclidean (SSE) distance measure and hence is given as,
E(W*) = min{E(W)} (5.5)

Although KMeans is fast, the algorithm is sensitive to tHea#n of initial cluster-head positions and

Algorithm 5.1  KMeans patrtitioning

Require: K, data set of siz& and dimensionalityl

Ensure: the assignmenti,, Vn € N, wherek € K
1: randomly initializeK locations ord dimension space with centroidg, vk € K
2: initialize iteration number — 0

3: repeat

4 i—i+1

5. forn=1toNdo

6: calculateEng, Vk € K

7: find K, such tha€ny = min{E.x}
8: V\I"nK —1, andvv‘nk —0,Vk#K

9: end for

10:  updatecy according to equation 5.2k € K

11: until Wi, = wh, b, vne N andk € K

nk .
12: return: Wng < Wy, vn€ N andk € K

can easily converge to local optima if the choice of initiattiiions is improper. Also, the algorithm

is applicable only for single objective clustering.

5.3.2 Multi-Step Normal Form Game Model

The KMeans identifies the partitions on the basis of minitnraof SSE. However, this process
adversely affects the complementary equi-partitioningctive. A game theoretic methodology is de-
scribed in this section to perform clustering of the dataibyutaneously optimizing all the conflicting
objectives. Specifically, the process involves the ideaifon of initial clusters using the initialization
step. These clusters are then categorized as players angdaexenters, and a game is formalized.
The players in the game compete for allocation of resources fthe resource centers. The resource
centers consist of a discrete set of data objects. Thegyrafea player is modeled as a tuple consist-
ing of the number of resource units requested from everyuresccenter. The payoff corresponding

to every strategy is a function of the conflicting objectivAdNash equilibrium solution to the game is
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then evaluated, and the allocations are performed acgydiAfter the reallocation, the clusters are
updated. This complete process is repeated until the stgmpiteria are satisfied. The steps involved
in the algorithm are described in Algorithm Algorithm 5.2 héfollowing sub-sections describe the

normal form game theoretic model in details.

Algorithm 5.2  Game theoretic algorithm

Require: K, data set of siz& and dimensionalityl

Ensure: K partitions optimized on the basis of objectives
1: initialize K cluster centers od dimensional space
2: perform one iteration of Algorithm Algorithm 5.1 | steps 6-1
3: repeat

4. loathefore < getLoad); SSkefore < getSSE)
5. if ke K| lk < ligea then
6: initialize a new gamé&1
g P— {m]|In <lidea};R— {n|In > ligeal}
8: forall rp|n=1,--- Rdo
9: rn.overhead— | — ligeai;rn-consistent— 0
10: end for
11: forall pn|m=1,--- ,Pdo
12: perform minimum cost initial allocation of resources fr&tnsuch thaty, = ligeal
13: end for
14: update,; Vne R
15: forall rp|n=1,--- Rdo
16: if I, > rp.overheadthen
17: rhp.conflict«+— 1
18: Gl.createStrategySet %see Algorithm Algorithm 5.3 %
19: Gl.createPayof f); %see Algorithm Algorithm 5.4 %
20: Gl.evaluateNashEquilibriuf); %see Algorithm Algorithm 5.5 %
21: perform temporary reallocation of units to players acangdp Nash equilibrium
22: end if
23: rn.conflict < O;rp.consistent— 1
24: end for
25: load,sier < getload); SSEfter < gelsSE()
26: if %A(load) > %A(SSE then
27: commit reallocations
28: update cluster centers according to step 2
29: else
30: break
31 end if
322 endif

33: until FALSE
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Figure 5.1 ldentification of optimum clusters using gameothtic clustering (GTKMeans) and
KMeans methodologies. (a)lnitial clusters identified bygse iteration of KMeans, (b) final clus-
ters after KMeans, (c) formulation of a game with play@ispz, p3 and resourcess,r,, (d) final
clusters after GTKMeans algorithm

5.3.2.1 Identification of Players

The steps involved during the algorithm can be describet thi¢ help of an examptegiven in
Figure 5.1. During initialization, the cluster centers amadomly generated for thé~dimensional
data set. This is followed by the identification of initialisters by performing a single iteration of the
KMeans. As shown in Figure 5.1(a), theand theSSEvalues of the initial clusters is not optimal.
If the iterative KMeans as shown in Algorithm Algorithm 5.1 s implemented with the objective of
minimization of SSE the final value of th&SEis 38716 (Figure 5.1(b)). However, the corresponding
L value is 106.8, signifying that the clusters are not equi{paned. Hence, a game is formulated with

the objective of simultaneous clustering of objects on #Edof compactness and equi-partitioning.

1The data is taken from German Town Data, which is a two dinoeraidata set with 59 observations, obtained from
[106]. The SSE value for KMeans clustering for 5 clusterdiésreported minimum value in literature [85].
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The first step in the formulation of the game is defining the gonents of the game, i.e., the
players, the resources, the strategies, the payoff fumcedc. In this model, the cluster centers with
Ik < ligeal, VK € K are identified as the players in the game. Alternatively, dluster centers with
Ik > ligear, Vk € K, are considered as the resources in the game. The objettarglayer is to re-
ceive the data objects from the resources in such a mannehithaompactness objective and the
equi-partitioning objectives are optimized simultandpudn a situation where multiple players are
requesting units from the same resource center, there isfact@mong the players, so every player
competes against every other player in the game in order xamize its own utility. One such exam-
ple scenario is displayed in Figure 5.1(c), where the pRperand ps will compete to receive units

from the resource centey.

5.3.2.2 Definition of Strategy

The feasibility of a game theoretic model largely dependsnujne notion of strategy, which is
a major factor in determining the computational complexifythe model. One way of defining the
strategy for a player is to create a tuple consisting of thabmr of units that the player can request
from every resource available in the system. For exampl&igare 5.1(c), the playeps, which
requires 6 resource units to realize equi-partitionedatiln, could have a stratedy, 5}, i.e., receive
one resource unit fromy, and 5 units fronr,. The strategy set for the player would consist of all
possible combinations of resource units from the resowcations, and the strategy space increases
exponentially with every unit increase in the number of tese centers. Hence, such a notion of
strategy is applicable only for the games with very few reses, and an alternate notion of strategy
has to be identified for this model.

Algorithm Algorithm 5.3  outlines the steps involved in therrhulation of the strategy set for a
player. Essentially, it is a two step process, in which, myithe first step, the players try to receive
resource units from the resource locations on the basis mimim cost allocation methodology, ir-
respective of the allocations made to the other players. tDtleis, a situation may arise where the
resource locations have allocated more resources tharvéithead available with them. Therefore,
for every such resource location, a game needs to be foredudatd solved to ensure equi-partitioning.

Hence, during step two, the cluster centers that have téeeliving resources from the resource lo-
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cation in conflict are considered as the players in the gantee players’ strategies consist of the
number of resource units they may have to loose in order torerthat the corresponding resource
location (for which the game has been formulated) is in iest state, i.e., the resource location
is equi-partitioned. An example scenario described in ledgu2 would be helpful in improving the
understanding. As shown in Figure 5.2, the plagehas requested 1 resource units from location
r, and playerp, has requested 4 units. Due to the requestspay loose 5 units, which would lead
to a situation wheré;; < ligea. HOwever, the players only need to loose a total of 3 unitstand
to receive those units from other resource locations torenthatl,1 = ligea. SO, a game is played
between the playerp; and py, with playerp;’s strategy set a§0}, {1}, and playemp;,’s strategy set
as{0},{1},{2}, with the numbers indicating the resource units the playeg have to loose in order
to ensure that the resource center is equi-partitioned. pldgers would receive a payoff for every
strategy, which would be a function of the additional costumed for receiving the resources from
the centers that are farther from the player, and the charig&alue for the players and the resource.
Modeling of the strategy in the proposed manner reducestthtegy space considerably. Also, the
number of actual players per game is significantly less tharidtal number of players in the system,
since not all players would have requested units from theureg location that is in the conflict sit-
uation. Effectively, using this methodology, one large gamsubdivided into several small games

played in multiple steps.

Algorithm 5.3  Generation of strategy set
Require: resource location in conflict(), rn.overhead set of all player$
Ensure: strategy seB| S={S,S, - S}
1: identify the set of playerf’ that received allocation of resource units from
2: forall pj|i=1,---,P do
3:  numstrategies= min(r.overhead units received by fromry)
for j = 0 tonumstrategieslo
S+ = {j}%number of units a player may have to loose frgnfo
end for
St ={s}
8: end for
9: returnS

N o a R
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Figure 5.2 An example for definition of strategy. Here, rl1 ahdre the two clusters with more units
available with them after the initial clusters are identifiepl and p2 are the players in the game,
competing with each other in order to receive maximum resounits from rl.

5.3.2.3 Payoff Function

The players in a game play their strategies in order to opérthie equi-partitioning and the com-
paction objectives of the resource center for which the gamlkayed. An expected utility is associated
corresponding to each strategy combination that a playérdrgame would receive. This utility is
mathematically modeled as a payoff function, which evasidihe gain or loss a player incurs when it
plays its own strategy, and the other players play theiresponding strategies. In this scenario, the
payoff for a playerm;'s strategys‘,'J and the playerp_; strategy combinatioegi for a game played for

resource centan; is affected by the following factors.

e Every resource unit that the player intends to loose froms received from the other resource

locationsr_j. This increases the SSE value for the player.

e When the other playerp_; in the game play,' beforep;’s strategys,, the cost incurred for
receiving the resources from further increases because some of the closer resourcelat

might have already allocated resources to the plagers
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e The load valud,; value forrj improves as the players try to receive units from. However,
as the total number of units lost by the players become gréiad® ligea, the loadl;; starts

worsening. Hence the absolute value of chandg ineeds to be minimized.

The payoff function captures the inter-relationship ofdélveve mentioned criteria, and is modeled as
a geometric mean of the total loss incurred by the play@n terms of the difference between the SSE
before and after the other playeps; play their strategies,’, and the absolute value of the logd

corresponding to the strategy.

Algorithm 5.4 Payoff matrix generation
Require: strategy se§, playersP’, conflict resourcer()
Ensure: Payoff matriceo of playersp; |i=1,--- ,P
1: forall pj|i=1,---,P do
rows«—| § |
columns— M5 i(| S |)
create empty payoff matripg of sizerowss* columns
for j =0 tocolumnsdo
for k= 0torowsdo
I'Chefore <—COSt (@s a distance measure) incurregbitéor receivingk resource units from
resource locationsy | m# n, ry.consistent= 0
8: CCeost <——Change in the load value of system when players play their strategy combi-
nation corresponding to columj) and receive resources units from locatiops| m #
n,rm.consistent=0
o: ICafter <—COSt (as a distance measure) incurregitdor receivingk resource units from
resource locationsy, | m# n,rm.consistent= 0, after the other playerp_; have played
their strategies

N

No g R w

10: ICfinal <= lCafter — 'Chefore

11 CCfinal «—| rn-overhead- (CCeost+ K) |
12: pa [K][j] < v/fCtinal * CCinal

13: end for

14:  end for

15: end for

5.3.2.4 Nash Equilibrium Solution

The multi-objective clustering problem being modeled aamag s solved using the Nash equilib-
rium methodology. As compared to the other solution corecapdilable in the literature, only Nash
equilibrium method identifies the social optima. The payufitrices evaluated during the previous
step serve as the input to the algorithm, which generatesifuioas a Nash equilibrium strategy set

consisting of one strategy chosen for every player in theegaAt the Nash equilibrium point, no
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player has incentive to change its strategy unilaterallye Wash equilibrium algorithm is explained
in Algorithm Algorithm 5.5 . After the equilibrium strategg are identified, the reallocation of re-
source units is performed accordingly. The game is thereplégr other resource locations in conflict
and the allocations are performed accordingly. The clustsns are then updated, and the complete
process is repeated until there is no further improvemeom@of the objectives without worsening of

the other.

Algorithm 5.5  Nash equilibrium algorithm
Require: Payoff Matricespa of playersp; |[i=1,--- ,P’
Ensure: Nash equilibrium strategy combinati@
1: forall pay |i=1,---,P do
2:  identify a strategyg’ such that
3 pq(S]_’...’q*’...’%,)ZpQ(S]_’...’S’...’%,)
4:  %Nash equilibrium strategy combination identified on thei®af [36]%
5. end for

6: 3k2{317"'7$/}

7: returnS*

5.3.3 Ensemble Based Game Theoretic Clustering

As shown in the previous sub-section, the simultaneoudering on the basis of multiple objec-
tives is performed using multiple game iterations, whergeaation consists of multi-step games. The
complexity of this method depends upon the number of datectbps well as the number of clusters,
and thus the response time of algorithm is high for large data. Hence, an ensemble method that
performs the complete clustering on the basis of fast madktieat methods followed by a game theo-
retic algorithm has been presented here. In this methothglthe first step, a KMeans clustering of
the data objects is performed on the basis of the objectineimimization of the intra-cluster distance
as explained in the Algorithm Algorithm 5.1 . The clusterganted after the KMeans algorithm
are not optimal on the equi-partitioning parameter, henganae is formulated with the players as the
clusters with number of data objects less tha, and the resources as the clusters with the number
of data objects greater thdgeo. The game is then played and a Nash equilibrium solutiontpsin
identified. A reallocation of the data objects is performiecklative change in the compactness and
the equi-partitioning values is below the threshold. Sjribe game is played only once in this sce-

nario, the notion of the strategy as described in the papagtaof Section 5.3.2.2 can be adopted.
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Although, post KMeans game theoretic model, referreBl&&amehenceforth, does not perform si-
multaneous optimization of multiple objectives, the meliilogy is fast, and the results obtained for

the experiments are promising.

5.3.4 Analysis of Game Theoretic Algorithm

In this subsection, the methodology is analyzed to evalitatpracticability. First, the compu-
tational complexity of the methodology for the extreme sase well as the worst case scenario is
identified, then some of the unique attributes of Nash dauilm algorithm that makes it attractive as
a solution method for this model are discussed. The disousgill conclude with a brief discussion

about the progression of algorithm.

5.3.4.1 Computational Complexity Analysis

In a normal formP-player game with an average number of strate@qr player, the worst
case time-complexity is given b®(P x S”) [36] when the game is played in single shot. However,
in the model discussed in section 5.B, a multi-step game bas formulated and solved. So, the
overall computational complexity of playirfigsuch games i©®(RxPxS’), whereR C K,P c K and
R+ P < K. K is the total number of clusters. AmomyP, andS, the complexity is largely governed
by the value ofS, which depends upon the definition of a strategy. As opposdhe natural notion
of strategy as a combination of resource requests from aesgurce location, the strategy in this
context has been defined as the number of resources a playenave to loose in order to ensure
that the resource location is in consistent, equi-par#o state. This restricts the size of strategy
set of a playem; as| S |= [N/K|. Hence, the worst case time complexity of one game is given
asK x [N/K|K, sinceP <« K. Now, if the number of clusterk is 1, the computational complexity
would beR* (1xN?) = R«N. Similarly, if K = N, the complexity would bé\ x 1N, sinceligea = 1.
Therefore, for the extreme cases, the complexity of theeay&O(N?) < O(R+P* ). In the worst
case scenario, the number of players in the game is equaktoumber of resources in the game.

Hence K = N/2, and the complexity of the system is given by Equation 5.6.

(N/2) % (N/2) % [N/(N/2)|N/Z = N2« 2(N-2)/2 (5.6)
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The complexity of this algorithm depends primarily on thentoer of games and the number of data
objects in the data set. Hence, this methodology is idealtgd for multi-objective clustering in small
to medium sized data sets.

The Nash equilibrium solution points possess certainbaities that make the methodology appro-
priate for certain applications. A Nash solution point igially equitable, which means that every
player in the system is satisfied with respect to every otlarep, and hence is in equilibrium. Social
satisfaction is important in the scenarios where everyaigin a multi-objective clustering has equal
priority. Another important aspect of Nash equilibrium h&t, for a mixed strategy non-cooperative
game, a Nash equilibrium solution point always exist [36lthdugh, a pure strategy game has been
modeled in this work, the model can be easily extended as adyskategy game by associating

probabilities corresponding to the strategies of a player.

5.3.4.2 Nature of Algorithm Execution

The algorithm consists of multiple games, one for everyuesmlocation in conflict. The player
set corresponding to a game consists of the set of clustathéve requested data objects from the
resource center in conflict. Once a game is played for a p#aticesource location, and players
receive the excess allocation from other resource locgtibie location for which the game was played
becomes consistent in terms of equi-partitioning. howeaesituation may arise at a later time that
this location again becomes inconsistent due to allocatfomnits to other players as a result of a
game played for some other resource location. In extremescadisis may lead to cycling, and the
methodology would take infinitely long time to complete. hder to ensure, that such a situation does
not occur, &lag is associated with every resource for which a game is plaged,is set tdcFALSE
initially. The flag is set toTRUE after a game is played for that resource. All the resourcéls wi
flag=TRUEare not considered for reallocation. This ensures thatlgwithm progresses in forward

direction and finishes in finite number of steps. Howeves thay affect the quality of solution.

5.4 Experimental Results

Several single-objective clustering methodologies haenldeveloped and employed for various

applications. However, in the multi-objective clusteridgmain very few methods have been pro-
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posed, which significantly limits the comparative study loé performance of our algorithm. The
performance of our algorithm, referred @I KMeanshenceforth as compared to the KMeans algo-
rithm, and a modified algorithm emulating the weighted rmolijective optimization methodology
has been evaluated in this section. The first sets of expetaweere performed with real data sets
being used in the previous studies. To analyze the algonittare closely in terms of efficiency and
quality of the solution, artificial data sets were createditoulate the real world scenarios, and the
method was exhaustively tested on those data sets. Alssetisiivity of this method in terms of the
various parameters like the number of clusters, the nunflata objects per clusters and the strategy

sets of the players has been investigated in this section.

5.4.1 Simulation Setup

The GTKMeans was tested on some of the data sets that havenidey used in literature for

the evaluation of general purpose clustering approaches d@ita sets are listed as follows:

e British Town Data (BTD): A data set consisting of four pripal socio-economic data compo-

nents corresponding to 50 British towns. The set was oladdmen [107].

e German Town Data (GTD): A two dimensional data set contgitie location coordinates of

59 German towns. The data set was obtained from [106].

¢ Iris Data (IRIS): A four dimensional data set consisting lué sepal length, sepal width, petal

length, and the petal width measurements on 150 sampled$blfRained from [107].

The real data sets available in the literature often have@msic structure that a specific clustering
methodology attempts to comprehend and cluster accoxdiriglie to this property, the clustering
methods that are fitting for certain data sets may not be gpipte for others since they optimize a
single objective. Hence, to better evaluate the performahan algorithm, and analyze the sensitivity
of various attributes of it, a wider range of artificial dattssneed be constructed. In this work,
704 normally distributed data sets consisting of the loecatioordinates of data objects on a two
dimensional grid of size 12*12 were created. The values cimend variance were varied from;
0 = +2 and 0< u < 10. The size of data sets was varied from 50 to 150 data olgectisioned into

310 10 clusters. Also, intra-cluster similarity measureterms of number of objects per cluster were
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taken into consideration. As an example, a data s&t96 would have 90 data objects partitioned
into 6 clusters, with each cluster having the number dateatdjranging from 0.8« (90/6) | = 12

to | (0.2x(90/6)) + (90/6) | = 15. For each experiment, averages of 200 repetitions weferped
with random cluster center (cluster head) initializatiohke Nash equilibrium solution to the n-person
normal form game was identified using t8anplical Subdivisiomlgorithm. Among the several Nash
equilibrium methodologies available in literature, thaglical subdivision method has been identified
to work consistently better than other existing method@egThe algorithm is acceptably fast for the
moderate sized problems. Based upon the simplex methodlgbethm starts with a given grid size,
and converges to an approximate solution point by iterdéiaeling of the sub-simplexesGambit
[108], an open source C library of game theory analyzer softvtoolkit was used for identification
of Nash equilibrium solution. Gambit incorporates sevéfath equilibrium algorithms for solving
normal form, extensive form, and Bayesian games. All expenits were performed on a Sunblade

1500 workstation that had 4 GB of RAM.

5.4.2 Experiments with Existing Data Sets

To evaluate the performance of GTKMeans algorithm, we coetbd with the classical KMeans
algorithm for the BTD. Since both KMeans and GTKMeans methaogies have similar starting points
and both the methods identify same clusters during theliziéition phase, the initial knowledge of
the environment is same for both methods. Afterward, the &hdealgorithm proceeds with an objec-
tive of cluster compactionSSB, whereas the GTKMeans simultaneously optimizes the cotigra
as well as the equi-partitioning measurkes Figure 5.3 displays a comparative graph of GTKMeans
and KMeans performance for the clustering performed on ttiesB town data [107]. The percent-
age improvement iIBSE(Y-axis on left) andL (Y-axis on right) values from the initial clusters for
different cluster sizes is displayed in the graph. As evidesm the graph, folK = 4,-.. .10 the
percentage improvement in ttheobjective for GTKMeans is much higher than that of the omdjin
KMeans algorithm, whereas the percentage improveme@sisis more for KMeans as compared to
GTKMeans. This is due to the fact that the KMeans algorithmigoens a single objective optimiza-
tion only on the basis of compaction, whereas the GTKMeagmridlhm identifies clusters on the basis

of simultaneous consideration of both the clustering dhjes. The average improvement3sEand
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L for GTKMeans is 87.3% and 62.7% respectively. Although therovement inSSEmeasure is
95.8% in case of KMeans, the equi-partitioning measure avgs by only 30.7%. Overall, the GTK-
Means algorithm showed a mean improvement of 20% higherttietrof the KMeans algorithm for
simultaneously optimizing both the objective functions. évaluate the performance of the PKGame
methodology, experiments were performed on the German Teata [106]. The performance of the
algorithm in optimizing the two objectives is shown in Figut.4. The graph displays the relative per-
formance of the PKGame and the KMeans algorithms. The PKGaatkodology outperformed the
KMeans method in terms of the average percentage improwamtre L for the clusters. The output
characteristics were similar to the previous experimemt, &n average overall improvement of 18%

was noted. In an attempt to evaluate the performance of tistecring method in a multi-objective

Performance of Algorithms on BTD dataset
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Figure 5.3 Performance of the algorithms on the British Talate set. KMeans and GTKMeans
algorithms are compared on the basis of their performanaptimizing the compaction (SSE) and
the equi-partitioning (L) objectives.

setting, we modified the original KMeans algorithm to inammgte the equi-partitioning objective to
the original compaction objective. In this modified KMeaMKMeans) method, the clustering was
performed on the basis of a function that was a weighted geeshtheSSEand thel values of clus-

ter. The weights were kept at 0.5 so that both objectives qually represented in the solution. The
results from the set of experiments performed on the IRI& dat [107] are shown in Table 5.2. The

table lists the improvements in tlheand theSSEvalues obtained after 200 iterations of GTKMeans,
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Performance of Algorithms on GTD Dataset
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Figure 5.4 Performance of the algorithms on the German Taata set. KMeans and PKGame al-
gorithms are compared on the basis of their performancetimging the compaction (SSE) and the
equi-partitioning (L) objectives.

KMeans, MKMeans, and PKGame algorithms. On average the Gdagid method outperformed
other methods for majority of experiments. The ensembledd&dKGame method also performed
well on most of the data sets. The improvement of PKGame tneKiMeans method is attributed to
the fact that the former is a refinement that is performed #fie latter finishes. The experiments on
the existing data sets were promising, and showed the paltapplicability of this method. Overall,

the game theory based multi-metric clustering method ofgpeed the KMeans algorithm in terms
of simultaneous optimization of the multiple objectivesthdugh, the method is slower than KMeans
method in identifying clusters, it provides socially fangtions. However, a thorough analysis of this
method required further experimentation, and hence,@dlifilata sets were generated to evaluate the

various sensitivity measures as well as the performancaunes of the method.

5.4.3 Experiments with Artificial Data Sets

To evaluate the performance of the two microeconomics bamxttiods the multi-objective clus-
tering was performed on the artificial data sets describékdrbeginning of this section. An average
of the outputs for improvements BSEandL values were plotted on graphs as shown in Figure 5.5

and Figure 5.6 respectively. From Figure 5.5, it can be ifiedtthat the KMeans algorithm performs
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better than the game theoretic methods for the compacti@cinke. Also, the performance of the
MKMeans method follows the KMeans closely. This behavidntsitive as the means based parti-
tioning methodologies optimize only tt&SEattribute. However, from the Figure 5.6, it is evident
that the performance of KMeans for equi-partitioning obyecis significantly inferior as compared
to the GTKMeans and PKGame methods. This follows from thetfet the two objectives are often
inversely correlated, and the unilateral improvement ia objective function adversely affects the
other objective. However, since the GTKMeans method semelbusly optimizes both the objectives,
the clustering performance was improved by more than 50epéfor both the objectives, as shown
in the graphs. Another observation was that the performahtiee ensemble based PKGame method
did not improve much for the smaller clusters, il€.= 3,4, but for the larger number of clusters,
the ensemble method also performed well. Since the KMeamkswiery well for smaller number
of clusters (3-4), the compactness values are high (alseevirom graph), and hence, when game

theoretic method is applied after KMeans, thenproves at the cost @SE which is not desired.

Improvement in Compaction
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Figure 5.5 Average improvement in the compaction objedkivethe experiments on artificial data

sets. The optimization in th8SEmetric compared to the worst case values is evaluated fordtisle
GTKMeans, MKMeans and PKGame.
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Improvement in Equipartitioning
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Figure 5.6 Average improvement in the equi-partitioningective for the experiments on artificial
data set. The optimization in themetric compared to the worst case values is evaluated fordfisle

GTKMeans, MKMeans and PKGame.

5.4.4 Fairness of Clustering

The strength of the game theoretic clustering methodol@gyih the fairness of optimizing each
objective with equal priority. To appropriately evaluate fperformance of the algorithms, a quantita-
tive measure of the fairness of the algorithms for optimgZ¥sEandLOAD can be identified using the
Jain’s Fairness Indek109], or a geometric mean of the relative improvement indlastering criteria.

According to the Jain’s index, the fairness of the methoglplis identified using Equation 5.7.

(3 %)
‘;X' (5.7)

fairness= ————
(n+ Y )
23

Here, x; corresponds the improvement in th# objective. The fairness value ranges from 0 (worst
case) to 1 (best case). Similarly, The geometric mean ofrtipgavements in the clustering criteria

identifies the average performance of the methodology, lgquaighing all the criteria. Table 5.3

shows the fairness metric values for different number oftelks. As shown, the GTKMeans method

has a high Jain’s fairness index averaging 0.98 as compathd KMeans value of 0.93. This signifies
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that the GTKMeans method optimizes both the objectives aqtml priority. Similarly, the geometric
mean of the GKT-Means is higher than the KMeans by more tharedcent. The fairness performance

of the MKMeans method and the PKGame method is also infavitheg GTKMeans fairness.

5.4.5 Sensitivity Analysis

The experimental results on the artificial data sets, showtheé previous subsections give hints
about the sensitivity of this methodology for different id@sattribute values. In this subsection, we
will closely analyze the sensitivity of the GTKMeans methothe number of players, number of
strategies per game, response time of the algorithm, andtste of the data set significantly affect
the practicability of this method. In the following subdens, we experimentally analyze these pa-

rameters.

5.4.5.1 Data Set Similarity Measure

In many cases, the structure of the data set has a significguaict on the performance of an
algorithm. We generated a wide range of artificial data setsrims for number of data objects per
cluster defined as the similarity measure, and radius ofsieriaso = +2 on a 10*10 grid. The effect
of structure on the execution time of the algorithm for diffiet similarity measures and cluster sizes is
shown in Figure 5.7. As shown, the similarity measure do¢sigaificantly impact the performance
of the algorithm, i.e., on average, the execution time of@Gi&Means algorithm is independent of
the structure of the data set, and hence it is suitable asaajarustering methodology. The average
performance in terms of fairness of allocation is shown ibl@%.3. The geometric mean fairness is
in range 60-80 percent, which is a good measure of fairnessicé] the structure of a data set does

not adversely affect the performance of this methodology.

5.4.5.2 Number of Players and Strategies

An important consideration during the modeling of a probliena game theoretic framework is
the impact of the size of game. The size determines the caibpland consequently the performance
of the system. Thus, we evaluated the average size of the igaerens of the number of players and

the strategies for different clusters. The graph shown guife 5.9 displays the range of players and
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Effect of Dataset Structure
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Figure 5.7 Effect of data set similarity measure on the etk@cuime of the GTKMeans algorithm.
The initial data set similarity measure is given as the degfesimilarity in the sizes of the initial
clusters. A higher degree of similarity results in initiddsters with almost equal number of data units
per cluster.

conseguently the strategies for different clusters. Arartgnt observation is that although the average
number of players increases as the cluster size incredsetytal number of players is significantly
less than half the cluster size, which is the worst case sicerféor example, on average there are at
most 3.5 players for the data sets with 9 clusters. It is afgmitant to note that the average strategy
size does not increases exponentially as a function of tingbeu of players, which is the intuitive
notion in a game theoretic setup. This behavior is attribtethe alternative definition of a player and
strategy for our model as discussed in section 5.3.2.2. Tduelmg controlled the complexity of the
system significantly. However, the surge in the number eftetjies for data sets with large number
of clusters indicate that the GTKMeans is better suited foltinobjective clustering of medium sized

data sets with a less number of clusters per data set.
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Execution Time Performance of GTEKMeans
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Figure 5.8 Relationship between the execution time anddhnebier of clusters. The algorithm execu-
tion time of KMeans and GTKMeans are compared in this set péaments. Additionally the worst
case and the average case execution times are plotted apdean
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Figure 5.9 Average number of players and strategies foergifft cluster sizes. For different clus-
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consequently the execution time and the feasibility of flastering algorithm.
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5.4.5.3 Execution Time

The multi-objective clustering methodology presentedhiis wvork is slower than the KMeans
method by multiple orders of magnitude. Similar is the caile ather heuristics based methodologies.
In order to quantify the effect of number clusters on the akea time of the algorithm, and analyze
the performance extremes, we plotted average executianamd the maximum execution time for
different number of clusters. As shown in Figure 5.8, for Benaumber of clusters, i.ek =3,---,8,
the GTKMeans performs well and identifies the optimum chsstethin 10 seconds. Also, the worst
case performance follows similar trend and is within 100os€ls. However, for larger number of
clusters, the performance decays exponentially. This éstduhe fact that as the number of clusters
increase, the potential number of clusters and correspglydihe strategies increase significantly, and
the game becomes large. The time complexity of the Nashikdquih algorithm is exponential, which

results in slower execution time for such cases.

5.5 Discussion

A novel microeconomics based algorithm for multi-objeetstustering problem has been devel-
oped in this research. In this algorithm, a non-cooperatiudti-player normal form multi-step game
is formulated with the subsets of initially identified clest as players. Any mathematical partitioning
method can be employed to identify the initial clusters andpdate the clusters after an iteration of
the game. A Nash equilibrium based method is used to solvgaime theoretic formulation. This al-
gorithm is independent of the type and the number of objestifiat can be simultaneously optimized.
Also, an ensemble based game theoretic optimization #tgorinas been developed in this work. In
the ensemble based method, the KMeans partitioning ispeeffirst, followed by a game theoretic
formulation based upon the sizes of the clusters. The axgetal study on the existing and artifi-
cial data sets provides important insights for the gamer#tmoclustering algorithm. As compared
to the KMeans, this algorithm performs significantly beiteterms of the fairness toward improv-
ing the clustering criteria. Also, the complexity of the @iighm in terms of players and strategies
is much lower as compared to the classical normal form gam@rétic modeling. This is attributed
a novel definition of strategy. This algorithm is not sensitihe structure of the data set. However,

the algorithm does not scale very well with the size of theadsgts in cases where the number of
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clusters increase. Overall, this model is well suited forudtinobjective clustering problem where the
objective functions are complementary and need to be apithsimultaneously.

The domain of multi-objective clustering is receiving sfgrant attention as the newer multidis-
ciplinary research areas are emerging. This first attemptapounding a game theoretic solution is
attractive. The applications of this algorithm may reqieseral objectives to be considered simulta-
neously, depending upon the application area. Also, amalte modeling of the payoff function may
improve the cost function in terms of capturing the esserfia@mpetitive objectives, and thus need
further investigation and refinement. A logical next stepdgearch is to model this game theoretic
clustering approach for dynamically changing scenariasil&ly, techniques for pruning the strategy

sets would also result in multi-fold improvement in the penfiance and complexity of the model.
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Table 5.2 Performance of the algorithms on Iris data set.clistering algorithms KMeans, MKMeans, GTKMeans, and PK@&are compared for
their performance on two optimization metrics, compac{ie85 and equi-partitioningL().

Total Average Improvement in SSET Value (in %) Average Improvement in Lt Value (in %)

Clusters| KMeans| MKMeansg§| GTKMeansy| PKGamett| KMeans| MKMeans | GTKMeans| PKGame
2 94.5 93.9 84.3 94.5 45.8 40.3 57.1 45.8
3 93.7 97.4 76.8 93.8 35.9 75.9 57.6 35.9
4 93.6 98.2 72.4 86.1 35.6 64.5 94.2 99.9
5 93.6 98.3 75.4 90.4 33.6 55.8 82.0 97.9
6 93.2 98.7 67.2 914 30.1 55.2 61.7 914
7 93.4 98.8 63.9 93.6 29.5 44.7 75.2 90.8
8 93.9 98.9 51.9 94.9 30.8 51.7 59.4 82.9
9 93.8 99.0 59.8 95.2 29.6 45.7 60.2 83.4
10 94.2 99.0 72.2 95.0 29.0 43.1 69.9 86.1
11 94.7 990.1 66.3 95.7 31.8 43.0 66.2 85.1

t: Sum of Squared Euclidean Distance (SSE) correspondg tmthpaction objective

F: Load(L) corresponds to the equi-partitioning objective

8. Modified KMeans (MKMeans) algorithm

9: Game Theoretic KMeans (GTKMeans) algorithm developdtisiresearch

t1: Post KMeans Game Theoretic (PKGame) ensemble basatttalgaeveloped in this research
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Table 5.3 Fairness of the clustering algorithms. The KMeafisMeans, GTKMeans and PKGame algorithms are compared etdsis of the
guantitative measure of the fairness of the clustering. thlofairness indexes used for the comparison are Geometidnfairness index and Jain’s
fairness index.

Clustering Geometric Mean Fairness Index Jain’s Fairness Index
Algorithm 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

KMeans | 57.1| 60.5| 61.2| 59.4| 60.1| 60.9| 56.9| 62.0| 0.89| 0.94| 0.95| 0.93| 0.93| 0.95| 0.93| 0.96

MKMeans | 64.0| 65.9| 65.2| 64.9| 63.7| 62.2| 62.0| 62.7| 0.92| 0.94| 0.94| 0.94| 0.94| 0.92| 0.92| 0.92

GTKMeans| 78.0| 73.8| 72.7| 71.2| 77.1| 73.8| 74.3| 76.2| 0.90| 0.98| 0.98| 0.97| 0.97| 0.98| 0.97 | 0.99

PKGame | 57.1| 66.5| 56.7 | 46.3| 36.5| 41.3| 41.8| 44.9| 0.90| 0.88| 0.80| 0.72| 0.66 | 0.72| 0.74| 0.78
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CHAPTER 6

GAME THEORETIC APPROACH TO ROBOT TEAM FORMATION

The aggregation of robots into teams is necessitated dine tiinited power and communication
capabilities in emergency environments. The formationeaints of robots significantly enhances
the performance and efficiency of search and rescue misgiosisch environments. As opposed
to the classical partitioning application domains, theotadiggregation requires multiple conflicting
objectives to be optimized. We present a new method for $émebus multi-objective partitioning
of robots into teams, which is based on the concepts of miorm@mics. The method utilizes the
strengths of KMeans algorithm, game theoretic modelingl Mash equilibrium methodology for
fast and socially fair partitioning. In this work, partitie are created to identify decentralized teams
of robots in such a manner that each robot in a team closet tminmunication gateway, as well
as each team is equally represented in terms of its strebgtte(y power). Rigorous simulations
were performed to evaluate the performance of the methatiffenresults indicate that our method

performs significantly better than the KMeans methodolagy identifies good solution points.

6.1 Problem Description

In the recent years, search and rescue robotics has emergedimportant emergency response
function. Mobile robots have been shown to be a valuableuresoduring the exploration missions
in the event of such emergencies [110]. These robots aréveton collecting and integrating the
information, and transmitting it to the base station foithier deliberation. In a centralized system,
this requires each robot to maintain a wireless connectiitin thve base station and constantly send
the information packets. However, this communicationgsiicantly limited by the strict constraints
of battery power, low radio range, and constantly changmgrenment for every robot.

For a detailed explanation of the steps involved in the rauttiergency robot deployment and the

issues faced in the process, please refer to Figures 6.1 — 6.5
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e Figure 6.1 shows a scenario where multiple emergency gihsabave emerged in a locality
in a time-overlapped manner. Often in such situations, #moyment of emergency response
personnel is not feasible, and hence robotic units play aoeitant role in the search and rescue

missions.

e The robots deployed in the field requires two types of comiation. Each unit needs to com-
municate with the base station to receive the command anulotorThe feedback from the
emergency location is continuously transmitted to the Istesion. Also, the robots communi-
cate with each other in order to coordinate the coverageaamesg them. This ensures that the
complete terrain is covered. The deployment of robots aadrtterconnection network being

established in such scenario is shown in Figure 6.2.

e However, a point-to-point grid based networking schemere/leach node communicates with
every other node and the base station is not feasible in #ues@rios. This is shown in Figure
6.3. Due to the limited battery power and high communicatieerhead, a few robotic units may
drop out of the system as the time progresses, resultingitoatien where the communication

with some of the emergency location would be lost.

e Thus, a partitioning mechanism may be used to form teamshaft nanits, such that each par-
tition has a set of robots that are close to each other ancehdissipating less power in intra-
cluster communication. Also, a partition head is decidedm@gnthe nodes of the partition
(possibly the one with maximum available battery power)clhis responsible for the inter-
cluster as well as the cluster to base station communicaiithis manner, the communication
overhead is reduced and the robots may sustain in the fiel@riger duration. If a classical
clustering scheme like KMeans is used for partitioning, tkems are formed as shown in the

Figure 6.4.

e However, the partitioning requirements in a multi-emenyerescue and response are different
from other environments, in the sense that the partitiomngquired to be performed on the
basis of multiple criteria. In this particular case, thetsaf robots being formed should possess
two important properties; the intra-cluster communiaatihould be minimized to reduce the

power dissipation in communication, and each team shoukbelly represented in terms of
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its capabilities. The set of capabilities could be anythizgging from the equal distribution of
the robotic units in terms of their rescue capabilities, diwribution of robotic units that are
specialized to perform certain jobs, or a simple equal ibigfion of the total battery power in
each cluster to ensure that each emergency location is egdmnwith equal capabilities. The
classical partitioning algorithms are largely single rieetiptimization methods, and thus can
not be used for partitioning. They often result in formatadrpartitions that are either too large
or too small. One such patrtitioning result is shown in Figbu® where a couple of partitions
are too large and a couple of them are too small. If the pamtis too small, the robots in that
partition will have to perform all the work, as well as comnaation, and will soon drop out of

the network due to rapid power dissipation.
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Figure 6.1 Example of a multi-emergency situation in a sbadorarea. Several emergency manage-
ment resources are allocated to the emergency locationsefoch, rescue, response and recovery
process.

Although, the issue of work distribution to the robots witla team [111, 112] has received sig-
nificant attention, the development of specialized algang for optimal aggregation of robots into
teams has not been explored. Unlike classical applicatimnaihs like data mining, bio-informatics,
computer vision and pattern recognition, computer and comecation networks, and information
systems [11,12], where object and data clustering are ipeei on the basis of single objective, multi-

disciplinary applications like robot team formation regumultiple criteria (that may be conflicting

117

www.manaraa.com



Ay

Figure 6.2 An example of search and rescue robot deploymmentuiti-emergency scenario. The
robotic units are deployed in situations where search astligesituations are complex and inacces-
sible to humans. A primitive inter-connection network itaptished to monitor progress in real time
and share the information among the robots, and betweensrahd the base station.

sy

Figure 6.3 Effect of high communication overhead on thedeand rescue process. As a result of
high communication bandwidth and the limited battery poefezach robot, the robotic units may die,
thereby disrupting the response from some emergency tosati
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Figure 6.4 Partitioning of robots such that the intra-dustommunication is minimized, and each
partition has a head node responsible for inter-clustemeonication.

Figure 6.5 Partitioning results for robot team formatioingsKMeans algorithm. Since KMeans
performs the partitioning on the basis of a single objeabfveluster compaction, the teams identified
using this algorithm are such that some of the teams are aegg in size, whereas some of the teams

are very small in size.
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in nature) to be optimized. Some of the partitioning créen this domain include compaction, equi-
partitioning of robots on the basis of capabilities periiart, number of units per partition, availabil-
ity of average battery power per partition, or equi-digttibn of workload per partition, etc. Hence, a
technique for simultaneous optimization of conflictingetijves needs to be developed. In this work,
we have developed a novel methodology that performs simedtias multi-objective partitioning of

robots into teams. The methodology consists of three ilmpbdomponents:
e An iterative hill climbing partitioning algorithm
e A multi-step normal form game theoretic model

e A Nash equilibrium (NE) based solution methodology

6.2 Why Microeconomics for Robot Team Formation?

In the context of rescue robots, due to the power and commtiocconstraints, compactness and
uniform power distribution have been considered as thectifsgs to be optimized. Since these two
objectives are conflicting, and thus convex in nature, ttstesy can be naturally modeled as a game.
Also, as shown in [13], if the payoff function is convex, a Ra&sjuilibrium solution always exists and
tends to evaluate globally optimal solutions.

In multi-emergency environments, it is desirable to enshat all emergencies receive resources
in a fair manner. Fairness has several connotations, bhisrcase it corresponds to a situation where
each emergency receives its fair share of rescue robotse @wuory exhibits a unique property social
equity or social fairness [13], which ensures that eachgulaythe game is satisfied and the overall
goals are reached. The game theoretic social equilibridrarantly ensures the optimum values of

each objective with respect to other objectives, which @rdble in these scenarios.

6.3 Background

The real time applicability of mobile robots for urban séaend rescue (USAR) was first rec-
ognized during the World Trade Center disaster [113]. Tiseaech in the domain of USAR, and
human-robot integration (HRI) [114] has identified exglicommunication among the robots as a

big obstacle. This is attributed to the limited network barih, limited battery power of robots, and
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noisy communication channels. An effective solution ts iioblem is to cluster the robots into teams
to ensure robustness and reliability. In [115], the authage discussed the performance of several
rescue robots at the RoboCup Rescue Real Robot League diiomgetand have identified that the
multiple robot cooperation, and teams of robots could maeanthe search regions, and utilize and
enhance the abilities of robots in search and detectiononissHowever, much research concentrates
on the identification and optimization of task distributi@md cooperation among the robots within a
team [111].

In [112], the use of stochastic game theory to model coojperatmong the robot team on the
basis of observation history has been demonstrated. Slynila[116], the authors propose a hybrid
robotic communication mechanism that uses robot visionradib signals for improved communi-
cation. In [117] the multi-robot exploration problem hasbeddressed from a different perspective
by suggesting a KMeans based clustering of the unknownlsepexce and allocating the space to the
robots for exploration.

The problem of object partitioning has been investigatatiécontext of a wide range of applica-
tions, and reported in literature. Detailed surveys oféhesrks can be found in [11,69]. An elaborate
discussion of these methods on the basis of partitionirtgréilike compaction, equi-partitioning,
connectedness, and spatial separation can be found inglLZTle KMeans [74] is the simplest and
most widely used mathematical algorithm for partitioningtbe basis of compaction. It is used for
creating initial partitions in our approach discussedrlatedditionally, some heuristics based tech-
niques [83, 88] and hybrid approaches [85] have been propioskterature. However, all of these
methodologies are limited to single objective optimizatitn the realm of multi-objective optimiza-
tion, the proposed models primarily consist of ensemblehou [89] that perform single objective
optimization using different methods for different objees, and integrate the resultsposteriori
These methods do not exploit the real strength of simultasmenulti-objective optimization.Mi-
croeconomic optimizatiomethods are capable of naturally modeling the situationsoaoflict and
cooperation in a game theoretic setting as discussed inréwgops section. It models optimization
problems in a framework consisting of players with conftigtobjectives competing to optimize their
individual as well as the system wide utilities [27, 28]. Tdeme is solved using Nash equilibrium

based methodology that identifies a socially fair soluti®®l] [
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In this work, we identify the robot team formation problem asnulti-step normal form non-
cooperative game. A subset of initial partitions identifigdKMeans algorithm are modeled as play-
ers, and the remaining as resources, different combirsatbrobot requests by players from different
resource centers as strategies, and a function of compaijegtives compactness and uniform power
distribution as the payoff. The partitions are updatedatteely on the basis of NE solutions until the

stopping criterion is satisfied.

6.4 Microeconomic Modeling

In this section, we describe the partitioning algorithm rraulti-robot team formation. Since this
is an application of the multi-objective clustering apmtod®eing presented in Chapter 5, the method-
ology follows the same steps for most part. In this sectiomwill briefly discuss the steps involved
in the algorithm. Please refer to Section 5.3 for detailestdption of these steps.

The algorithm identifies the initial partitions using the lé&hs clustering method, and if the initial
partitions are not optimal, a game is formulated with thdifians as players and resources. A Nash
equilibrium solution of the game identifies the optimal eedtion of robots to the partitions. The

notations and terminology being used in the rest of the pagegiven in Table 6.1.

6.4.1 KMeans Partitioning

This methodology requires the KMeans algorithm to identifjial as well as the updated teams
of robots. The KMeans algorithm partitions the total numderobotsN into partitions K) depend-
ing upon the number of emergency locations in a region. Eeamiwould perform the search and
rescue operations at the corresponding emergency locafioa steps involved in the mathematical

partitioning process are:
e Initialize the random partition heads at the coordinatations near the emergency locations.

e Calculate the distance (Euclidean in this case) of eacht iobim each of the partition heads,

given as:
N d

E(k)(W) = Ziwik (Xij —ij)z (6.1)
i= =1
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Table 6.1 Notations for robot partitioning. The notatiome ased in developing the algorithm for
robot teams formation on the basis of compaction for low gagdigsipation in communication, and
equi-partitioning for uniform power distribution.

N Total number of robots in the system

d Total number of attributes of a robot (coordinates)

K Total number of partitions

En  Euclidean distance betwearandk, wheren € N andk € K
E Sum of the squared Euclidean distance

Ik Number of robots in partitiok, Vk € K
lisear Number of robots per partition in a uniform power distributisituation;ligeas = [N /K|

L Uniform Power Distribution Measuré; = TK_; (I — ligeal)?

P Total number of playerd®? C K

D it player in a gamé&i € P

p_i The set of all the players in the game other than the player
R Total number of resource centeRsi- K

rj jt" resource center in a garvg;c R

r_j  Setof all the resource centers not in the current game

Ui Total number of strategies of a playgr

S Set of all the strategies of player

s, uth strategy of the playep;; s, € S andu=1,---,U

S Strategy set consisting of all the strategies in the ge8re{S,, S, -, S}

S Setof all the strategy combinations of all the players othan p;

s A strategy combination consisting of one strategy of allgtayers other tham;; s;' € S ;

K N d
E(W) = k;i;Wik JZl(xij —Cj)? (6.2)

Here, Equation (6.1) corresponds to the distance measuttesfkth partition and Equation (6.2)

corresponds to the total intra-partition variation.
e Assign the robot to the partition according to the sum of segiEuclidean distance (SSE)

measure, as given by Equation (6.3).

E(W") = min{E(W)} (6.3)

6.4.2 Game Theoretic Partitioning of Robots

The process of identifying partitions with the objectivermhimization of SSE measure adversely
affects the complementary power distribution objectiven@ed byL). Hence, a game is required
to be formulated to simultaneously optimize all the confligtobjectives. Specifically, the process

involves the identification of initial partitions using thrtialization step of KMeans algorithm. These
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partitions are then categorized as players and resourterseand a game is formalized. The players

in the game compete for allocation of resources (robot ufriben the resource centers. The strategy

of a player is modeled as a tuple consisting of the number lndteorequested from every resource

center. The payoff corresponding to the various strategieesents conflicting objectives. After the

formulation of the game, a Nash equilibrium solution pomevaluated and the allocations are per-

formed accordingly. After the reallocation of robots to fhaatitions according to the game theoretic

solution, the partitions are updated using the KMeans #dhgor This complete process is repeated

until optimum partitions are identified. The steps involwethe algorithm are described in Algorithm

Algorithm 6.1

Algorithm 6.1  Microeconomic robot team clustering algorithm

Require: Locations of robots, initial number of partitions, init@location of robots to the partitions

after KMeans

Ensure: Optimal Partitioning of robots into teams on the basis of @odistribution and compaction

10:
11:
12:

© 0N O R W

objectives

if for each patrtitiork then
The conditionly = ligeq is satisfied, then report the solution as optimal, and exit.
Here,ligea = Number of units per cluster at the uniform power distributstate

. else

Classify the unequal partitions as players and resources:
Players: alk, such thatk < ligeal;
Resources: al, such thaty > ligear;

end if

: for For each resource locatialo

Players formulate a game with their strategies, to receivts grom the resource, so that the
overheads are distributed among the players and the resacinieves a consistent stalig.f;).
The game is then solved for an equilibrium solution poinhgdlash equilibrium algorithm
end for
After the reallocation, the new partition centers are idimat, and the process is repeated until
convergence

The generation of the strategy set involves the playersadrio receive units from the resource

locations on the basis of minimum cost allocation methagiplarrespective of the allocations made

to the other players. However in this process, a situatioy amae where location has allocated more

units than its overhead. Therefore, a game is formulatedsahad for that resource location, and

subset of partitions that have tried receiving units fromlaty the game. The strategies of the players

consist of the number of units they may need to lose in ordensaire that the resource location is in

consistent state, i.e., it has a uniform power distributiDne to this alternative definition of strategy,
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a single step game with an exponential strategy set andhangéder of players is reduced to multiple
games of with significantly smaller strategy sets and pkydihe details of the steps followed for
defining the strategy set for the game theoretic formuladi@ngiven in Section 5.3.2.2.

Each strategy combination in a game has an expected utitlya player would receive. The
utility is mathematically modeled as a payoff function exding the gain or loss a player would incur
when it plays its own strategy and the other players play ttmiresponding strategies. The payoff
function in this model captures the inter-relationshiphe bptimization criteria, and is modeled as a
geometric mean of the total loss incurred by a player whelaitgpa particular strategy. Specifically,
a player would have to receive units from a distant resowcation if the other players request for
all the units available with the current resource locatidhe payoff, a function of power distribution
metric and compaction metric is the loss to the player wheh sisituation occurs. The algorithm for
payoff function is given in Algorithm Algorithm 5.4  in seot 5.3.2.3.

The payoff matrices evaluated during the previous stepigem@s input to the Nash equilibrium
(NE) algorithm, which generates an output as a NE strateggawsisting of one strategy chosen
for every player in the game. At the Nash equilibrium poirg, player has incentive to change its
strategy unilaterally. Mathematically, the NE point isejivby Equation (6.4). After the equilibrium
strategies are identified, the reallocation of units isqrenkd accordingly. The game is then played
for other locations in conflict and the allocations are pernied accordingly. The partition medoids
are then updated, and the complete process is repeatedhantiélative improvement in the power

distributions does not supersede threshold decrease ke of SSE.

pQ(51a7$7as>|k3’)2pQ(sia7S7as>|k3’) (64)

6.5 Experimental Results

In this section, we present the experiments that were caaig to evaluate the efficacy of the
methodology for robot team formation. Since there are nahwearks available for multi-objective
robot partitioning, several artificial data sets were @ddb simulate the real world scenarios. The

performance of the microeconomic model was compared witltldssical KMeans algorithm.
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6.5.1 Simulation Tools and Setup
To simulate the locations of robots on a terrain the follaysetup was formulated:

e Atwo dimensional grid of size 12*12 was created, and noryndiitributed data sets consisting

of the x-y coordinates of the robot locations on the grid wgaeerated.

e The values of mean and variance were varied from0< 10 ando = 42 respectively for each

data set.
e The data sets with 35 nodes were generated, with 3 to 7 dysterdata set.

e The intra-partition similarity measures in terms of humbg&robots per partition were taken
into consideration. For example, a data sé&t would have 5 partitions, each partition having

the number of robots ranging froh0.7x (35/5)| =4 to | (0.3 (35/5)) + (35/5)| = 9.

e Each experimental result was an average of 200 repetitigtiisrandom gateway location ini-

tializations.

e The Nash equilibrium (NE) solution to the n-person normahf@ame is identified using the
Simplical Subdivision algorithm, which has been identifiedwork consistently better than
other existing NE methodologies available in literaturas&d upon the simplex method, the al-
gorithm starts with a given grid size, and converges to anceqamate solution point by iterative

labeling of the sub-simplexes.

e Gambit [108], an open source C library of game theory analgaftware toolkit for identifica-

tion of NE solution was used as a solution methodology.

6.5.2 Analysis

Experiments were conducted to study the performance ohtbifiod in simultaneously optimiz-
ing the objective functions; the compaction meas@®H and the uniform power distribution measure
(L). As shown in Figure 6.6, for a data seff@hat consists of 6 gateways, and 35 robots distributed
among the gateways, our methodology identifies the paritiwith theSSEof 58.86, and thé being
10.83, which contributes toward an improvement of 90.3% @@% respectively from the initial

values. However, for the KMeans algorithm, although thermapment in compaction is 1.3% higher
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than game theoretic method, the power distribution ohjeds 45.1% worse. Overall, the game theory
based multi-metric optimization method outperforms thedé¥is algorithm in terms of simultaneous

optimization of the multiple objectives.

(=% L (after KMeans): 60.83
K-Means 0 | &

. SSE (after KMeans):
Partitioning  °1 50.98
&
L (initial): 110.83 | , | .
SSE (initial) : 610.00 a8 oy
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Figure 6.6 Identification of optimum sizes of the clusterd #ire locations of the cluster centers using
game theoretic algorithm, and KMeans algorithm. Total nemiif robots = 35, total number of
gateways = 6, and name of data set Z.&t.

The average performance of the new method was also compétether KMeans algorithm. All
35 data sets were executed and average of the outputs favements irSSEandL were plotted on
a graph as shown in Figure 6.7. As shown, the improvemengicdmpaction objective is higher for
the KMeans algorithm. This is intuitive since KMeans perisrthe partitioning only on the basis of
optimization of compaction objective. However, this adedy affects the uniform power distribution
objective, and is evident from the graph.

In contrast, our algorithm simultaneously optimizes bdté tbjectives. It is important to note
that both the objectives are optimized with an average ingrent of more than 50% in terms of
results. An interesting observation is that as the numbpadftions increase, the performance of this
method improves and after certain limit it degrades. Thikisto the increasing dimensionality of the

problem. If the number of partitions are too few, the inipalktitions identified by the initial iteration
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Figure 6.7 Average performance of algorithms on artificialadsets. The KMeans and the game
theoretic algorithm are compared for their performancehenctuster compactior5GB and uniform
power distribution i) metrics.

of KMeans optimally partitions the data, and a game is nohtdated often. As the partitions increase,
the KMeans initialization is unable to identify optimum stars resulting in multiple iterations of game
formulation and hence simultaneous optimization of oljjest However, as the partitions increase
beyond a certain limit, the number of strategies per gamease and the game theoretic model in
its current form prunes the strategy set to control the dsimgrality of the problem. Due to this,
occasionally the strategies that are not locally optimahawe a global effect may get pruned thereby
affecting the performance.

The response time of a microeconomic model largely determits practicability in an applica-
tion domain. The parameters that largely govern the respbime for game theoretic model in this
context include the number of players, the number of pan#j and the total number of strategies of
players. Table 6.2 shows the average values of these pana@t different number of gateways. For
smaller number of partitions, the initial KMeans clustgria often optimal and a game is not required
to be played, and hence average number of iterations of gautess than one. The results on the
simulated data sets are promising because as the numbettitibpa increase, the number of strate-
gies do not increase exponentially, which is a concern wibtistrof the problems modeled in a game
theoretic framework. The linear relationship between the of strategy set and number of partitions

is attributed to the novel definition of the strategy and traleling of the game in this context of this
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work. The strategy set for a player in this model does not ngmsa combinations of the number of
resource locations that are availing the resources, butenumber of units a player may have to lose

for keeping the resource in a consistent state.

Table 6.2 Parameters affecting the game theoretic modelintér-relationship between the important
attributes of a game such as the number of players, numbdratégies, number of clusters, total
number of game iterations, and the execution time of therilkgo is identified.

Partitions 3 4 5 6 7
Avg. Iterations of Game | 0.23 0.80 1.52 1.96 2.02
Avg. Number of Players| 0.22 0.60 1.39 1.60 2.13
Avg. Number of Strategies 0.32 2.08 4.71 5.27 6.77
Response Time (sec.) | 0.0003| 0.0627| 0.1447| 0.1615| 0.1968

6.6 Discussion

A novel microeconomic approach for multi-objective robediin formation problem has been de-
veloped in this research. It models the problem as a hybnoggh involving Kmeans and non-
cooperative multi-player normal form game with Nash eguilim based solution. The objective
functions being considered in the model are compactnessuy@iform power distribution. The sim-
ulations have been conducted using normally distributéificéal data sets. The performance of this
method as compared to the KMeans algorithm conforms to timmdhat our model is better suited
for robot aggregation than the existing partitioning methoThe average complexity of the system
is non-exponential. This is the first successful attemphadirection of robot team formation on
the basis of multiple objectives. Currently, the model imistic, and optimizes only two objectives
simultaneously. However, the practical implementatiothefmodel may require more objectives, like
improved radio communication, minimum inter-team comroation, etc. to be considered. In such
scenarios, the payoff modeling would need further invesig and refinement. Also, in practice, the
capabilities of each robot are different, and such conati®rs must be reflected in the modeling. It
is required to deploy robots in several real world test sgesdo efficiently and accurately evaluate

the performance of the algorithm.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

Successful packing two billion transistors on a single ¢y gives a clear idea about the level
of miniaturization, and density of the next generation VicBtuits. This increase in the integration
uncovers numerous issues that have to be addressed by theedssn order to realize high perfor-
mance, low power dissipating, and reliable circuits. Sorthese concerns include the impact of
process variations at nanometer level, the effect of varpmrformance metrics on each other, and the
efficiency of the circuit optimization methods. It is a cleailging task to address all these issues in a
single model. The focus of this dissertation is to addrelsthese concerns in the VLSI domain, and
to develop a framework that is capable of solving the curaasnivell as next generation VLSI circuit
optimization problems.

The size of an optimization problem in any engineering @isoe encourages the use of clustering
mechanisms to partition a large problem into smaller proleand solve them separately. However,
it is difficult to adapt the knowledge and intelligence frotassical clustering disciplines to solve this
problem. Specifically, in situations where the clusteriegats to be performed on the basis of multiple
objectives that may be competitive in nature, single objeatlustering algorithms can not generate
good clusters. Thus, the development of a generalizedeclngt mechanism for such problems is
imperative.

In this dissertation, we have developed multi-metric optation frameworks to solve the VLSI-
CAD circuit optimization problems and spatial pattern tdusg problems, using utilitarian methods.

The specific problems being solved in this dissertation arfeliows:

e A post layout gate sizing algorithm for multi-metric optiration of delay, leakage power, dy-
namic power, and crosstalk noise in the presence of proasstions [118]. The algorithm
generates a deterministic equivalent of the inherentlghgtstic optimization problem, while

ensuring high utility levels. It is independent of the pree®ariation distributions and can in-
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corporate the impact of variations due to gate sizes as welitarconnects. The algorithm is

also capable of incorporating randomness in the objeatimetfons.

e Development of a unified mathematical programming baseddveork for multi-metric opti-
mization of delay, leakage power, dynamic power, and catlsabise in the presence of process
variation. The framework can be implemented using any nmagieal programming technique,

and is completely reconfigurable in terms of prioritizingsetecting the metrics to be optimized.

e Development of a simple yet effective cross-talk noise rhadd identification of relationships

between the different performance metrics in terms of gatss

e Development of a novel game theoretic clustering approachifultaneous multi-metric clus-
tering of spatial data objects. A general framework is dgeedl that can incorporate any number

of conflicting clustering objectives.

e The game theoretic clustering approach is applied to shleertulti-objective robot team par-
titioning problem in multi-emergency search and rescussimiss [119]. The partitioning is

performed on the basis of cluster compaction and uniformepalstribution.

The utilitarian methods being applied in this dissertamssess certain unique attributes that have
made their application suitable to solve these problemd,thea identification of these methods is
an important contribution of this dissertation. The expdattility based approaches change the per-
spective of solving the stochastic gate sizing problem watidom constraints to a deterministic risk
minimization problem with an objective of maximization ofpected utility of the satisfaction of the
constraints. This transformation significantly reduces time complexity of the algorithm, while
maintaining a high yield. This is a prime contribution ofgliissertation. The modeling of a cluster-
ing problem in a game theoretic framework is novel. The nefindien of strategies for the players
has contributed toward significant reduction in the time plaxity of the algorithm. A novel defini-
tion of payoffs as a function of equi-partitioning and corman is unique. The application of spatial
clustering algorithm for the robot team formation is a pitproblem, and this is one of the very

few works that have addressed the problem with this perspect
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The approaches presented in this dissertation are novdiamdwide applicability in the various
areas of research. Some of the future directions to impreee this dissertation work, and other

interesting research ideas are listed as follows.

e The multi-metric optimization model for VLSI circuit optiaation presented in this disserta-
tion incorporates four metrics that have been optimizeddi##dahal metrics like security and
reliability etc. can be incorporated easily once the retathip between the metrics in terms of

gate sizes is identified.

e The expected utility based methods can be utilized for waricircuit optimization techniques
like buffer insertion or repeater insertion and wire sizifigpese methods also find applications
in solving the multi-metric optimization problems usingtgaizing at the logic level or RTL

level.

e The expected utility based optimization presented in thisattation assumes that scarce infor-
mation in terms of only mean and variance of the processti@mmis available. However, if
more information in terms of coefficient of correlations iscaavailable, the model can be fur-
ther extended to incorporate such information and forneudatlinear programming equivalent

model with quadratic constraints [94].

e The VLSI multi-metric optimization problem contains anettjve function that is deterministic
in nature. However, the expected utility based method islolgpof solving the problems with
random objectives also. This is an interesting future waorknmulti-metric optimization with
different levels of randomness in the individual metricsicisa solution will give a frontier of

solution points.

e The game theoretic spatial clustering algorithm in its entrrform is capable of clustering
medium sized data sets. This is attributed to the non-limeaiease in the number of strategies
as the number of players increase. However, if better tgciesiare incorporated to aggressively

prune the strategy set, the algorithm would be able to allestger data sets.

¢ An alternative notion of applying the game theoretic mettwote clustering problem is to con-

sider the objectives as the players. It would be interestirgge the changes in the optimization
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performance, since the number of players in that scenariddidae constant, but the strategy set

may be larger.

e The game theoretic clustering approach has several uggdlitations. One such application is
in the domain of ad-hoc and sensor networks. The ad-hoc niedvmeed clusters to be formed
with the objective of minimizing inter- as well as intra-ster communication. To satisfy these
requirements, each cluster designates one of the nodesadsveay for inter-cluster communi-
cation and one node as a cluster head for intra-cluster coneation. Game theoretic clustering

approach can be utilized to solve this clustering problem.

133

www.manharaa.com




[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

A.J. Strojwas. Conquering Process Variability: A Keydbiter for Profitable Manufacturing
in Advanced Technology Nodesnternational Symposium on Semiconductor Manufactyring
2006.

ITRS. International Technology Roadmap for Semicondrs
http://www.itrs.net/Links/20071TRS/ExecSum2007.p007 .

K.T. Tang and E.G. Friedman. Interconnect Coupling MasCMOS VLSI Circuits.Proceed-
ings of the International Symposium on Physical Desgages 48-53, 1999.

S. Borkar. Design Challenges of Technology ScalileEE MICRQ pages 23-29, 1999.

S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshayand V. De. Parameter Variations
and Impact on Circuits and Microarchitectureroceedings of Design Automation Conference
pages 338-342, 2003.

H. Chang and S.S. Sapatnekar. Statistical Timing Anslyader Spatial CorrelationdEEE
Transactions on Computer Aided Desi@d(9):1467—-1482, 2005.

C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walkand S. Narayan. First-Order In-
cremental Block-Based Statistical Timing Analysi®roceedings of the Design Automation
Conferencepages 331-336, 2004.

H. Chang, V. Zolotov, S. Narayan, and C. VisweswarialraReeterized Block-Based Statistical
Timing Analysis with Non-Gaussian Parameters, Non-Lineafay Functions. IEEE/ACM
Design Automation Conferengeages 7176, 2005.

L. Cheng, J. Xiong, and L. He. Non-Linear Statisticalt®&tdiming Analysis for Non-Gaussian
Variation SourcesProceedings of the 44th Annual Conference on Design Automagiages
250-255, 2007.

Intel Corporation. World’s First Two Billion Transist Microprocessor.
http://www.intel.com/technology/architecture-sili¢@billion.htm 2008.

A.K. Jain, M.N. Murty, and P.J. Flynn. Data clusteringrreview. ACM Computing Surveys
31(3):264-323, 1999.

R. Xu and D. Wunsch. Survey of Clustering Algorithm&EE Transactions on Neural Net-
works 16(3):645-678, 2005.

A. Vetta. Nash Equilibria in Competitive Societies,tviApplications to Facility Location,
Traffic Routing and AuctionslEEE Symposium on Foundations of Computer Sciepages
416-425, 2002.

134

www.manaraa.com



[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

O.H. Kwon. Perspective of the Future Semiconductorustd: Challenges and Solutions.
Proceedings of the Design Automation Confere27.

J.W. Friedman. Game Theory with Applications to EcoimsnOxford University Pressl986.

U. Gupta and N. Ranganathan. Multievent Crisis Manag@msing Noncooperative Multistep
Games.|[EEE Transactions on Computeis6(5):577, 2007.

N. Ranganathan, U. Gupta, R. Shetty, and A.K. Muruga¥al Automated Decision Support
System Based on Game Theoretic Optimization for Emergenagagement in Urban Envi-
ronments.Journal of Homeland Security and Emergency Managendégj, 2007.

U. Gupta and N. Ranganathan. Social Fairness in MutieEjency Resource Management.
IEEE International Symposium on Technology and Socpetges 1-9, 2006.

U. Gupta and N. Ranganathan. FIRM: A Game Theory Baselti4@tisis Management System
for Urban EnvironmentsProceedings of the International Conference on Sharingitgmwis for
Emergencies and Hazardous Environments, American NuSleeiety pages 595-602, 2006.

A. Lazar and N. Semret. A Resource Allocation Game wipiphcation to Wireless Spectrum.
Technical report, Columbia UniversityL996.

Z. Liu, V. Misra, and L. Wynter. Dynamic Offloading in a MiaProvider Environment: a Be-
havioral Framework for Use in Influencing Peeringroceedings of IEEE International Sym-
posium on Cluster Computing and the Gnmhges 449-458, 2004.

Y.K. Kwok, S. Song, and K. Hwang. Selfish Grid Computirigame-Theoretic Modeling and
NAS Performance Resultfroceedings of IEEE International Symposium on Cluster @igm
ing and the Grig 2005.

D.C. Grosu and A.T.M.Y. Leung. Load Balancing in Dibtited Systems: an Approach using
Cooperative Game$EEE International Parallel and Distributed Processingni@yosiumpages
52-61, 2002.

N. Hanchate and N. Ranganathan. Simultaneous InteezdnDelay and Crosstalk Noise
Optimization Through Gate Sizing using Game TheotiZEE Transactions on Computers
55(8):1011-1023, 2006.

A.K. Murugavel and N. Ranganathan. A Game Theoretic rApph for Power Optimization
During Behavioral SynthesislEEE Transactions on Very Large Scale Integration Systems
11(6):1031-1043, 2003.

A.K. Murugavel and N. Ranganathan. Gate Sizing and@ufisertion using Economic Models
for Power Optimizationinternational Conference on VLSI Desjgrages 195-200, 2004.

F. Forgd, J. Szép, and F. Szidarovszkytroduction to the Theory of Games: Concepts, Meth-
ods, ApplicationsKluwer Academic Publishers, 1999.

E. RasmusenGames and Information: An Introduction to Game Thedlackwell Publishers,
2001.

Game Theory .net. A Resource for Students and EducauirsGame Theory.
http://www.gametheory.net/Dictionary

135

www.manaraa.com



[30] W.F. Lucas. Some Recent Developments in n-Person Gdmery. SIAM Reviewl13(4):491—
523, Oct. 1971.

[31] D. Dutta, A. Goel, and J. Heidermann. Oblivious AQM andsN Equilibria. ACM SIGCOMM
Computer Communications Revied2(3), July 2002.

[32] J. Von Neumann and O. Morgenstern. Theory of Games aoddtic Behavior.Wiley, New
York 1944.

[33] S.J. Russell and P. Norvig. Artificial Intelligence: Addern ApproachPrentice-Hall Series
in Artificial Intelligence page 932, 1995.

[34] M. Friedman and L.J. Savage. The Utility Analysis of @es Involving Risk.The Journal of
Political Economy56(4):279-304, 1948.

[35] J. Von Neumann. Zur Theorie der Gesellschaftsspiklathematische Annaled00:295-320,
1928.

[36] J.F. Nash Jr. Equilibrium Points in N-Person Gam&soceedings of National Academy of
Science of the United States of Ameyi8é(1):48—-49, 1950.

[37] E.D. Dolan, R. Fourer, J.J. More, and T.S. Munson. Th&ISEServer for Optimization: Ver-
sion 4 and BeyondMathematics and Computer Science Division, Argonne Natibabora-
tory, 2002.

[38] C. Visweswariah. Optimization Techniques for Highdidemance Digital CircuitsIEEE/ACM
International Conference on Computer-Aided Desigages 198-207, 1997.

[39] J. Cong, L. He, C.K. Koh, and P.H. Madden. Performancé@mpation of VLSI Interconnect
Layout. VLSI Journal on Integration21(1-2):1-94, 1996.

[40] J.M. Rabaey. Digital Integrated Circuits: A Design §mctive.Prentice-Hall Electronics And
VLSI Seriespage 702, 1996.

[41] B.C. Paul, A. Agarwal, and K. Roy. Low-Power Design Teitfues for Scaled Technologies.
Integration, the VLSI JournaB9(2):64—-89, 2006.

[42] T. Xiao and M. Marek-Sadowska. Gate Sizing to Elimin@atesstalk Induced Timing Violation.
Proceedings of the International Conference on Computesidgiepages 186—-191, 2001.

[43] T. Xiao and M. Marek-Sadowska. Crosstalk Reduction bgngistor Sizing.Proceedings of
the Asia and South Pacific Design Automation Conferepages 137-140, 1999.

[44] S. Bhardwaj, Y. Cao, and S. Vrudhula. Statistical LepkMinimization Through Joint Selec-
tion of Gate Sizes, Gate Lengths and Threshold Voltagmceedings of the Asia and South
Pacific Design Automation Conferengages 953-958, 2006.

[45] A. Srivastava, D. Sylvester, and D. Blaauw. Statigti@ptimization of Leakage Power Consid-
ering Process Pariations using Dual-Vth and SizPwgpceedings of the 41st Annual Conference
on Design Automation-Volume Ofages 773—778, 2004.

[46] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester. iSiaal Analysis of Subthreshold Leak-
age Current for VLSI CircuitslEEE Transactions on VLSI Systeri®(2):131-139, 2004.

136

www.manaraa.com



[47] M. Mani and M. Orshansky. A New Statistical Optimizatidlgorithm for Gate Sizing.Pro-
ceedings of the IEEE International Conference on Computsidh pages 272-277, 2004.

[48] V. Mahalingam, N. Ranganathan, and J.E. Harlow Ill. AzBEy Optimization Approach for
Variation Aware Power Minimization during Gate Sizing.EE Transactions on VLS| Systems
2008, to appear.

[49] M. Mani, A. Devgan, and M. Orshansky. An Efficient Algtbnin For Statistical Minimiza-
tion Of Total Power Under Timing Yield Constraint®roceedings of the Design Automation
Conferencepages 309-314, 2005.

[50] R.W. Brodersen, M.A. Horowitz, D. Markovic, B. Nikoli@and V. Stojanovic. Methods for True
Power Minimization.Proceedings of the International Conference on Computaiddepages
35-42, 2002.

[51] F. Gao and J.P. Hayes. Total Power Reduction in CMOSUt#rwia Gate Sizing and Multiple
Threshold VoltagesProceedings of the Design Automation Conferempesges 31-36, 2005.

[52] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, B. Thimon, and K. Keutzer. Minimiza-
tion of Dynamic and Static Power Through Joint Assignmerittoieshold Voltages and Sizing
Optimization. Proceedings of ISLPEpages 158-163, 2003.

[53] D. Sinha and H. Zhou. Yield Driven Gate Sizing for CoumgliNoise Reduction Under Un-
certainty. Proceedings of the Asia and South Pacific Design AutomatiomfeéCence pages
192-197, 2005.

[54] D. Sinha and H. Zhou. Gate Sizing for Crosstalk Reductitnder Timing Constraints by
Lagrangian RelaxatiorProceedings of the IEEE/ACM Conference on Computer AidesigDe
pages 14-19, 2004.

[55] N. Hanchate and N. Ranganathan. Statistical Gate@femYield Enhancement at Post Layout
Level. IEEE/ACM International Symposium on VLSI Desigages 245-252, 2007.

[56] V. Mehrotra, S.L. Sam, D. Boning, A. Chandrakasan, Rlisfzayee, and S. Nassif. A Method-
ology for Modeling the Effects of Systematic Within-Die éntonnect and Device Variation on
Circuit PerformanceProceedings of the Design Automation Conferer20.

[57] E. Jacobs and M. Berkelaar. Gate Sizing Using a StedisbDelay Model.Proceedings of the
Design Automation and Test in Eurqgmages 283-291, 2000.

[58] S. Nakagawa, D. Sylvester, J.G. McBride, and S.Y. Oh-Qbip Cross Talk Noise Model for
Deep-Submicrometer ULSI Interconneétewlett-Packard Jpages 3945, 1998.

[59] A. Davoodi and A. Srivastava. Variability Driven Gateziag for Binning Yield Optimization.
Proceedings of the 43rd Annual Conference on Design Auiomatages 959-964, 2006.

[60] S. Neiroukh and X. Song. Improving the Process-Vasiaflolerance of Digital Circuits using
Gate Sizing and Statistical TechniqueBroceedings of the Design, Automation and Test in
Europe pages 294-299, 2005.

[61] X. Bai, C. Visweswariah, N. Strenski, H. Philip, and Jadid. Uncertainty-Aware Circuit
Optimization. Proceedings of the Design Automation Conferepeges 58-63, 2002.

137

www.manaraa.com



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[75]

[76]
[77]

A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, ahao, K. Gala, and R. Panda. Path-
Based Statistical Timing Analysis Considering Inter-anttd-Die Correlations.Proceedings
of ACM/IEEE Workshop on Timing Issues in the Specificati@hSymthesis of Digital Systems
pages 16-21, 2002.

M. Hashimoto and H. Onodera. A Performance Optimizatitethod By Gate Sizing using Sta-
tistical Static Timing AnalysisProceedings of the 2000 International Symposium on Phlysica
Design pages 111-116, 2000.

M.R. Guthaus, N. Venkateswarant, C. Visweswariah, @ndolotov. Gate Sizing using Incre-
mental Parameterized Statistical Timing Analy$tsoceedings of the IEEE/ACM International
Conference on Computer-Aided Desigages 1029-1036, 2005.

S. Raj, S. Vrudhula, and J. Wang. A Methodology to Imgrd¥ming Yield in the Presence of
Process VariationProceedings of the Design Automation Conferepeges 448-453, 2004.

J. Singh, V. Nookala, Z.Q. Luo, and S. Sapatnekar. RioBase Sizing by Geometric Program-
ming. Proceedings of the Design Automation Conferepeges 315-320, 2005.

K. Agarwal, D. Sylvester, D. Blaauw, F. Liu, S. NassifidaS. Vrudhula. Variational Delay
Metrics for Interconnect Timing Analysi®?roceedings of the Design Automation Confergnce
1, 2004.

Y. Liu, S.R. Nassif, L.T. Pileggi, and A.J. Strojwas. piact of Interconnect Variations on the
Clock Skew of a Gigahertz MicroprocessoProceedings of the 37th Conference on Design
Automation pages 168-171, 2000.

P. Scheunders. A Comparison of Clustering Algorithnpgked to Color Image Quantization.
Pattern Recognition Letterd8(11-13):1379-1384, 1997.

E. Kolatch. Clustering Algorithms for Spatial Databas A Survey. Online Available,
http://citeseer.nj.nec.com/436843.htra001.

P. Berkhin. Survey of Clustering Data Mining Technigu&ccrue Softwaregl0:92—-1460, 2002.

F. Murtagh. A Survey of Recent Advances in HierarchiClstering Algorithms.The Com-
puter Journa) 26(4):354—359, 1983.

A. Baraldi and P. Blonda. A Survey of Fuzzy Clusteringgétithms for Pattern Recognition.
Il. IEEE Transactions on Systems, Man and Cybernetics, P&#9):786—801, 1999.

J. MacQueen. Some Methods for Classification and AmabfdMultivariate Observation$2ro-
ceedings of the Fifth Berkeley Symposium on Mathematiesis&ts and Probability 1:281—
297, 1967.

E. Vorhees. The Effectiveness and Efficiency of Aggloatige Hierarchical Clustering in Doc-
ument Retrieval PhD thesis Department of Computer Science, Cornell Unityers985.

G.J. McLachlan and T. Krishnarhe EM Algorithm and ExtensiongViley, 1997.

M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A DensitgsBd Algorithm for Discovering Clus-
ters in Large Spatial Databases with Nois&oceedings of the 2nd International Confference
on Knowledge Discovery and Data Miningages 226—231, 1996.

138

www.manaraa.com



[78] W. Gale, S. Das, and C.T. Yu. Improvements to an Alganitfor Equipartitioning. IEEE
Transactions on Computer89(5):706—710, 1990.

[79] Y.T. Wang and R.J.T Morris. Load Sharing in Distribut8gistems. IEEE Transactions on
Computers34:204-217, 1985.

[80] D. Grosu and A.T. Chronopoulos. Algorithmic MechaniBrasign for Load Balancing in Dis-
tributed SystemslEEE Transactions on Systems, Man and Cybernetics, Pe&848.):77-84,
2004.

[81] M. Demirbas, A. Arora, V. Mittal, and V. Kulathumani. Aaklt-Local Self-Stabilizing Clus-
tering Service for Wireless Ad Hoc NetworkdlEEE Transactions on Parallel and Distributed
Systemsl17(9):912-922, 2006.

[82] A.D. Amis and R. Prakash. Load-Balancing Clusters iméldss Ad Hoc NetworksProceed-
ings 3rd IEEE Symposium on Application-Specific System$aftdiare Engineering Technol-
ogy, pages 25-32, 2000.

[83] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optiration by Simulated Annealingcience
220(4598):671, 1983.

[84] K. Krishna and M.N. Murty. Genetic K-Means AlgorithitEEE Transactions on Systems, Man
and Cybernetics, Part B9(3):433—-439, 1999.

[85] M. Laszlo and S. Mukherjee. A Genetic Algorithm using péy-Quadtrees for Low-
Dimensional K-Means ClusteringlEEE Transactions on Pattern Analysis and Machine In-
telligence 28(4):533-543, 2006.

[86] J. Handl and J. Knowles. Evolutionary Multiobjectivéu€tering. Proceedings of the Eighth
International Conference on Parallel Problem Solving frdlature pages 1081-1091.

[87] F. Glover. Future Paths for Integer Programming andfigidl Intelligence. Computers &
Operations Resear¢ii3:533-549, 1986.

[88] M. Dorigo, G.D. Caro, and L.M. Gambardella. Ant Algdmihs for Discrete Optimization.
Artificial Life, 5(2):137-172, 1999.

[89] A. Topchy, A.K. Jain, and W. Punch. Clustering Ensemablgodels of Consensus and Weak
Partitions. IEEE Transactions on Pattern Analysis and Machine Intelige 27(12):1866—
1881, 2005.

[90] J. Handl and J. Knowles. Multiobjective Clustering aidister Validation, Chapter 1Studies
in Computational Intelligence, Springer-Verlag, Berlidermany pages 1-24, 2005.

[91] D. Grosu and A.T. Chronopoulos. A Game-Theoretic Madw®l Algorithm for Load Balancing
in Distributed SystemslEEE International Parallel and Distributed Processingn@yosium
pages 146-153, 2002.

[92] R.R. Schaller. Moore’s Law: Past, Present and FutlEEE Spectrum34(6):52-59, 1997.

[93] H.Chang, V. Zolotov, S. Narayan, and C. Visweswariadrafmeterized Block-Based Statistical
Timing Analysis with Non-Gaussian Parameters, Non-Lirigalay FunctionsProceedings of
the Design Automation Conferenqeages 71-76, 2005.

139

www.manaraa.com



[94] E. Ballestero. Stochastic Linear Programming with rBednformation: An Approach from
Expected Utility and Bounded Rationality Applied to the fikxindustry. Engineering Opti-
mization 38(4):425-440, 2006.

[95] M. Berkelaar and J. Jess. Gate Sizing in MOS Digital @itscwith Linear Programming.
Proceedings of the Design, Automation and Test in Eurppges 217-221, 1990.

[96] R.H. Byrd, J. Nocedal, and R.A. Waltz. KNITRO: An Integed Package for Nonlinear Opti-
mization. Large-Scale Nonlinear Optimizatippages 35-59.

[97] N. Ranganathan, U. Gupta, and V. Mahalingam. SimutiaeeOptimization of Total Power,
Crosstalk Noise, and Delay Under UncertainBroceedings of ACM Great Lakes Symposium
on VLS]| 2008.

[98] N. Ranganathan, J.E. Harlow lll, V. Mahalingam, and Wp&. Statistical Gate Sizing for
Multi-Metric Optimization of Delay, Power and Crosstalk ide at Post Layout LevelSemi-
conductor Research Corporation Technical Report, 1595.2007.

[99] P. Gargini, J. Glaze, and O. Williams. The SIAs 1997 iNahl Technology Roadmap for
Semiconductors: SIA roadmap previe#olid State Technology1(1):73—76, 1998.

[100] J.J. Buckley. Stochastic Versus Possibilistic Paogmning.Fuzzy Sets and Syster84(2):173—
177, 1990.

[101] R.E.Bellman and L.A. Zadeh. Decision Making in FuzaywEonment.Management Science
pages 141-164, 1970.

[102] Masatoshi Sakawasenetic Algorithms and Fuzzy Multiobjective Optimizatidtiuwer Aca-
demic Publishers, 2002.

[103] N.R. Gasimov and K. YenilmeZuzzy Linear Programming Problems with Fuzzy Membership
Functions 2000.

[104] J.G. Klir and B. YuanFuzzy Sets and Fuzzy Logierentice Hall, 1995.

[105] C. Papadimitriou. Algorithms,Games, and the InterReoceedings of the Thirty-Third Annual
ACM Symposium on Theory of Computipgges 749-753, 2001.

[106] H. Spath.Cluster Analysis Algorithms for Data Reduction and Clasatfon of Objects Ellis
Horwood, 1980.

[107] Y. Chien.Interactive Pattern RecognitiorM. Dekker New York, 1978.

[108] R. McKelvey, A. McLennan, and T. Turocy. Gambit: Sofire Tools for Game TheoryThe
Gambit Project 2002.

[109] R. Jain, D.M. Chiu, and W. Hawe. A Quantitative Measofé&airness and Discrimination for
Resource Allocation in Shared Computer Systédgital Equipment Corp. Eastern Research
Lab, DEC-TR-30,11984.

[110] L.M. Branscomb and R.D. Klausner. Making the NatiofieBaThe Role of Science and Tech-
nology in Countering TerrorismCommittee on Science and Technology for Countering Terror-
ism, National Research Councii002.

140

www.manaraa.com



[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

B.P. Gerkey and M.J. Mataric. Sold!: Auction Methods Multirobot Coordination. IEEE
Transactions on Robotics and Automatid8(5):758—-768, 2002.

R. Emery-Montemerlo, G. Gordon, J. Schneider, andiBuif. Game Theoretic Control for
Robot Teams.Proceedings of the 2005 IEEE International Conference ohddocs and Au-
tomation pages 1163-1169, 2005.

J. Casper and R.R. Murphy. Human—Robot Interactionsng the Robot-Assisted Urban
Search and Rescue Response at the World Trade CéBEEE Transactions on Systems, Man
and Cybernetics, Part B33(3):367-385, 2003.

R.R. Murphy. Human—Robot Interaction in Rescue RimlsolEEE Transactions on Systems,
Man, and Cybernetics, Part,34(2), 2004.

N. Sato, F. Matsuno, T. Yamasaki, T. Kamegawa, N. $h&oand H. Igarashi. Cooperative
Task Execution by a Multiple Robot Team and its Operatorseiar€h and Rescue Operations.
Proceedings of IEEE/RSJ International Conference on ligegit Robots and Systepmsages
1083-1088, 2004.

Y. Meng, J.V. Nickerson, and J. Gan. Multi-Robot Aggation Strategies with Limited Com-
munication. IEEE/RSJ International Conference on Intelligent Robatsl &ystemspages
2691-2696, 2006.

A. Solanas and M.A. Garcia. Coordinated Multi-RobofpBration Through Unsupervised
Clustering of Unknown SpaceRroceedings of IEEE/RSJ International Conference onlintel
gent Robots and Systenis 2004.

U. Gupta and N. Ranganathan. An Expected-Ultility Bla&pproach to Variation Aware VLSI
Optimization Under Scarce InformatiohEEE International Symposium on Low Power Elec-
tronics and Design2008, to appear.

U. Gupta and N. Ranganathan. A Microeconomic Apprdadilulti-Robot Team Formation.
Proceedings of the 2007 IEEE/RSJ International Conferemctelligent Robots and Systems
pages 3019-3024, 2007.

141

www.manaraa.com



LIST OF PUBLICATIONS

Upavan Gupta and Nagarajan Ranganathan, “An Expecteity(Btsed Approach to Variation
Aware VLSI Optimization Under Scarce InformationEEE International Symposium on Low
Power Electronics and Design (ISLPED’Q&008 (to appear). (chapter 3)

Nagarajan Ranganathan, Upavan Gupta, and Venkatramanlidgtm, “Simultaneous Opti-
mization of Total Power, Crosstalk Noise and Delay Under ddtainty”, ACM Great Lakes
Symposium on VLS| (GLSVLSI'0®pges 171-176, 2008. (chapter 4)

Upavan Gupta and Nagarajan Ranganathan, “A Microeconorprédach to Multi-Objective
Spatial Clustering”JEEE International Conference on Pattern Recognition (R288), 2008
(to appear). (chapters 5, 6)

Upavan Gupta and Nagarajan Ranganathan, “A Microeconomzdach to Multi-Robot Team
Formation”,IEEE/RSJ International Conference on Intelligent Robatd 8ystems (IROS’'Q7)
pages 3019-3024, 2007. (chapters 5, 6)

Upavan Gupta and Nagarajan Ranganathan, “Multievent<dvlanagement Using Noncooper-
ative Multistep GamesEEE Transactions on Computes6(5): 577-589, 2007.

Nagarajan Ranganathan, Upavan Gupta, Rashmi Shetty, ootk Adurugavel, “An Automated
Decision Support System Based on Game Theoretic Optiraizéir Emergency Management
in Urban Environments”Journal of Homeland Security and Emergency ManagemenkeBsr
Electronic Press4(2), Article 1, 2007.

Upavan Gupta and Nagarajan Ranganathan, “Social FairneSkilti-Emergency Resource
Management”)EEE International Symposium on Technology and SocieTA836 2006.

Upavan Gupta and Nagarajan Ranganathan, “FIRM: A Game ¥zased Multi-Crisis Man-
agement System for Urban Environment®roceedings of the International Conference on
Sharing Solutions for Emergencies and Hazardous EnviromsnéAmerican Nuclear Society,
Salt Lake City, Utahpages 595-602, 2006.

142

www.manaraa.com



ABOUT THE AUTHOR

Upavan Gupta received the Bachelor of Computer Applicatigtonors) degree from the Inter-
national Institute of Professional Studies, Indore, India2002, and the M.S. degree in Computer
Science from the University of South Florida, Tampa, in 208 is currently pursuing the Ph.D.
degree in the Department of Computer Science and Engingeairthe University of South Florida.
His research interests include the development of multimeptimization methodologies and im-
plementing those in different domains of computer sciemmkengineering. He is a recipient of the
IEEE Computer Society R.E. Merwin Scholarship. He is a studeember of the IEEE and the IEEE

Computer Society.

www.manaraa.com



	University of South Florida
	Scholar Commons
	5-30-2008

	Utilitarian Approaches for Multi-Metric Optimization in VLSI Circuit Design and Spatial Clustering
	Upavan Gupta
	Scholar Commons Citation


	C:/Documents and Settings/up1/Desktop/up1/Dissertation/diss_ugupta.dvi

