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UTILITARIAN APPROACHES FOR MULTI-METRIC OPTIMIZATION IN V LSI CIRCUIT
DESIGN AND SPATIAL CLUSTERING

Upavan Gupta

ABSTRACT

In the field of VLSI circuit optimization, the scaling of semiconductor devices has led to the

miniaturization of the feature sizes resulting in a significant increase in the integration density and size

of the circuits. At the nanometer level, due to the effects ofmanufacturing process variations, the de-

sign optimization process has transitioned from the deterministic domain to the stochastic domain, and

the inter-relationships among the specification parameters like delay, power, reliability, noise and area

have become more intricate. New methods are required to examine these metrics in a unified manner,

thus necessitating the need for multi-metric optimization. The optimization algorithms need to be ac-

curate and efficient enough to handle large circuits. As the size of an optimization problem increases

significantly, the ability to cluster the design metrics or the parameters of the problem for computa-

tional efficiency as well as better analysis of possible trade-offs becomes critical. In this dissertation

research, several utilitarian methods are investigated for variation aware multi-metric optimization in

VLSI circuit design and spatial pattern clustering.

A novel algorithm based on the concepts of utility theory andrisk minimization is developed for

variation aware multi-metric optimization of delay, powerand crosstalk noise, through gate sizing. The

algorithm can model device and interconnect variations independent of the underlying distributions

and works by identifying a deterministic linear equivalentmodel from a fundamentally stochastic

optimization problem. Furthermore, a multi-metric gate sizing optimization framework is developed

that is independent of the optimization methodology, and can be implemented using any mathematical

programming approach. It is generalized and reconfigurablesuch that the metrics can be selected,

removed, or prioritized for relative importance dependingupon the design requirements.
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In multi-objective optimization, the existence of multiple conflicting objectives makes the cluster-

ing problem challenging. Since game theory provides a natural framework for examining conflicting

situations, a game theoretic algorithm for multi-objective clustering is introduced in this dissertation

research. The problem of multi-metric clustering is formulated as a normal form multi-step game

and solved using Nash equilibrium theory. This algorithm has useful applications in several engineer-

ing and multi-disciplinary domains which is illustrated byits mapping to the problem of robot team

formation in the field in multi-emergency search and rescue.

The various algorithms developed in this dissertation achieve significantly better optimization and

run times as compared to other methods, ensure high utility levels, are deterministic in nature and

hence can be applied to very large designs. The algorithms have been rigorously tested on the ap-

propriate benchmarks and data sets to establish their efficacy as feasible solution methods. Various

quantitative sensitivity analysis have been performed to identify the inter-relationships between the

various design parameters.
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CHAPTER 1

INTRODUCTION

The advances in science and technology impact the realm of engineering. The most important

facet of the technology evolution is that it facilitates thedevelopment of improved products, and helps

in applying the knowledge and intelligence gained from one discipline to advance other disciplines.

The important objectives in developing these products are,incorporation of enhanced feature sets,

improvement in performance, and miniaturization. One way to achieve these objectives is to scale

down the dimensions of various constituent elements or components of these products so that more

components can be integrated on it. Improvements in the fabrication technologies aid in achieving

these goals. However, the transition from one technology level to another is not rudimentary, and it

uncovers new concerns. In the context of very large scale integrated computer aided design (VLSI-

CAD), specifically circuit optimization, these concerns can be explained as follows.

With the aggressive scaling of semiconductor devices to thenano-meter level, the integration den-

sity of the circuits increases. According to the International Technology Roadmap for Semiconductors

(ITRS) [2], the feature sizes for the devices and interconnects will continue to scale down at the rate

of 0.7x per generation. This reduction in sizes affect the circuit optimization process in several ways.

First, as the wiring density and consequently the aspect ratios in the metal lines increase, the cross-

coupling capacitance between the neighboring interconnects grows. This may result in an increase in

the interconnect crosstalk noise on a wire, due to the chargeinjected in it during the switching in the

neighboring nets. In the deep sub-nanometer designs, such coupling capacitance effects between the

adjacent nets can cause functionality failures causing reliability issues [3]. The noise due to cross-

coupling capacitance is a dominant component among the noise sources, and hence is an essential

consideration during the circuit optimization process. Second, the demand for power sensitive devices

has grown significantly in recent years. This is attributed to the remarkable growth of personal com-

puting and mobile devices such as laptop computers, cellular phones, music players and other portable

1
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devices that are predominantly battery driven. These devices demand high-speed computational func-

tionalities with low power consumption. However, as the integration density of transistors in a die and

the frequency of operations increase, the power consumption in a die increases with each generation.

To maintain low power dissipation, supply voltage is scaleddown. However, the scaling of supply

voltage is limited by the high-performance requirements. In order to maintain the performance, the

transistor threshold voltage should be scaled down to achieve low switching energy per device. Scal-

ing of threshold voltage significantly increases the sub-threshold leakage current [4], resulting in high

leakage power dissipation during standby. Thus, at the sub-nanometer level, power minimization is an

important metric in the circuit optimization process alongwith the performance metric. Hence, with

the scaling of technology, new paradigms that impact the performance and reliability of the designs

become an integral part of the design and optimization process.

The inter-relationships between these optimization metrics have become more intricate in the

nano-meter regime. Optimization of one metric alone may result in a performance shift from one

metric to another, thereby introducing sub-optimality in the values of other metrics. As a simple

example, if some circuit optimization technique is employed with an objective of only power min-

imization, the resulting circuit configuration may potentially have high interconnect crosstalk noise,

and hence low signal reliability. Alternatively, if the optimization is performed with the objective of

crosstalk noise minimization, the resulting design may notbe low power dissipating, thereby affecting

the performance of the device. Addressing these aspects of optimization are important considerations

in the next generation circuit optimization.

As the process technology is scaled down, the limitations due to manufacturing processes and en-

vironmental noise, make the physical realization of devices and interconnects unpredictable during the

front-end design. During the fabrication of semiconductordevices, the existence of non-uniform con-

ditions at the deposition and diffusion stages, or due to thelimited resolution of the photolithographic

process, the parameters like oxide thickness, effective gate length of individual transistors and inter-

connect widths may not follow the specifications. These variations may result in dramatic changes

in the device performance characteristics, as well as the reliability of the designs. As a result, the

design and optimization problem has transitioned from the deterministic domain to the probabilistic

domain [5]. Also, these process tolerances do not scale proportionally, thereby increasing the relative

impact of process variation on the design process with each new technology node.

2
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This transition of optimization process to the stochastic domain affects the circuit optimization

process. Since, the stochastic optimization techniques are inherently slower than their deterministic

equivalents, the optimization process is adversely affected. In recent years, the state of the art research

in VLSI design automation has addressed this issue. Severalcircuit optimization methods have been

developed with an objective of centering the designs specifications such that majority of the fabricated

circuits follow design and performance specifications. Many of these methods are based on the as-

sumptions that the variation sources of the components follow specific distributions, such as Gaussian

distribution, identified during the preliminary analysis [6, 7]. However, recent research refute such

assumptions [8, 9]. Additionally, more sources of process variation are becoming predominant as the

level of miniaturization is increasing, which is a principal concern in the semiconductor industry.

As a result of technology scaling, more components are integrated on the design area. Consider-

ing a simple example, the recent Intel Itanium®processor, code named ’Tukwila’, released in 2008 is

a two billion transistor chip [10] manufactured with 65nm technology. The total area of the chip is

699mm2 as compared to the billion transistor Itanium ’Montecito’ chip with a design area of 580mm2.

Although the number of transistors have doubled, the chip area has increase only by 20%. Due to the

increase in the number of components, and consequently the problem size, the optimization process

becomes significantly slow. In a general optimization problem, the size of a problem can be reduced

by partitioning it into several smaller clusters, and performing optimization in each cluster separately.

However, the clustering problem is not elementary, and any technique developed specifically for clus-

tering of data objects in one knowledge discipline may not bedirectly applicable for clustering in other

disciplines.

In spatial pattern clustering, several techniques have been developed for various applications in

a wide variety of scientific disciplines such as biology, computer vision and pattern recognition, and

communications and computer networks [11,12]. These techniques are largely application specific and

perform single metric optimization. Hence, they may not be applicable to the applications like VLSI

design partitioning, rescue robots deployment, ad-hoc networks establishment, and multi-emergency

resource management etc. Often, multiple competitive metrics are required to be targeted for opti-

mization in these engineering domains. To understand this problem, we can consider a hypothetical

multi-emergency environment where an ad-hoc network of nodes (rescue personnel, resources etc.)

performing the rescue operations at different emergency locations is to be established over a wireless

3
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link. Even though each node may have identical capabilities, due to the battery power constraints,

a subset of nodes are required to be identified that would be responsible for inter- and intra-cluster

communication. An optimal clustering mechanism must ensure that the nodes, as well as the complete

clusters do not drop out of the network. A clustering performed on the basis of one metric, saycluster

compactnessfor low power dissipation in intra-cluster communication,may result in a situation where

some clusters are too large and some are too small. The non-uniform power distribution among the

clusters in this case may result in a situation where the battery of the nodes in smaller clusters may

soon get exhausted, and the nodes drop out of the system. Thiswould result in loss of communication

from the emergency locations these nodes were servicing.

The exponential nature of such clustering problems qualifies the application of heuristics based op-

timization methodologies. However, any heuristic approach may not be adequate for spatial clustering

in this domain due to some inherent characteristics of theseproblems. First, the optimization metrics

here are often competitive in nature, and hence can not be optimized using the classical heuristics based

optimization methods that perform a single metric optimization, such as genetic algorithms, simulated

annealing etc. The clustering problem described above, represent one such class of problems. The two

objectives, cluster compactness and uniform power distribution are conflicting in nature and need to be

optimized simultaneously. Second, in several applications of this type, each objective to be optimized

during the clustering process is critical. In terms of the clustering performance, this translates to a

situation where the success of a clustering methodology is ascertained by the mutual satisfaction of

the optimizations corresponding to each objective in the problem. Formally, this metric of success is

termed as thesocial fairness[13] of the system. A concept widely studied and used in the field of

economics, social fairness of a system corresponds to a situation where each individual (or metric) in

the system is satisfied with respect to every other individual in the system, and the overall goals are

achieved. In this example, the social fairness of the partitioning mechanism for the ad-hoc network

clustering problem is maximized if both the objectives, compactness and uniform power distribution

are satisfied (optimized) with respect to each other. The mutual satisfaction ensures that all the metrics

are considered with the same priority level, and at an equilibrium solution point, any improvement in

one metric can only be achieved by worsening the optimization of other metrics.

The speed of technology evolution decides the lifetime of the products. The lifespan of the prod-

ucts is shrinking due to rapid improvement in the manufacturing technology. This entails the designers

4
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to identify and develop generalized optimization methods capable of incorporating the design objec-

tives of the future generation products, and are applicableto multiple disciplines with relative ease.

The objectives may include examination of additional metrics during optimization, and investigation

and incorporation of the effect of randomness at several levels. The optimization frameworks capable

of addressing these issues effectively would be beneficial for the community.

1.1 Motivation

The issues discussed above give a strong intuition about theproblems that will be prevalent in the

next generation computer engineering research. More precisely, in the VLSI-CAD, the technology

trends [2] suggest that with the aggressive scaling of devices the uncertainties due to process varia-

tions are expected to worsen in future. The dimensionality of the circuit optimization process will

further expand due to an increasing impact of design components affecting the performance and relia-

bility of the circuits. Also, the multi-fold escalation in the design density of the circuits is inevitable.

Thus, the circuit optimization methodologies capable of addressing only the problems occurring in

current technology generation may not scale well with the next generation issues. The single met-

ric optimization methods that result in a performance shiftfrom one objective to another and are not

generalized to incorporate additional metrics are no longer acceptable. Hence, an important challenge

in the VLSI circuit optimization is to identify vertically as well as horizontally integrated solution

methodologies [14].

Likewise, the existing methods in data clustering are incapable of addressing the clustering require-

ments for various multi-disciplinary engineering applications. Specifically, these applications require

methods capable of simultaneously examining multiple metrics during clustering. Also, a clustering

method must satisfy the social fairness [13] from the perspective of each clustering criterion. This

would ensure that each clustering metric is satisfied with respect to every other metric in the system.

The motivation for this dissertation is to explore the core issues in these problem domains, and

develop new multi-metric optimization approaches that exhibit the following features.

• A framework that is generalized in its ability to incorporate any number of optimization metrics

that may be necessary to be optimized for feasible solutionsto the problems. Also, the frame-

5
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work should be reconfigurable to enable relative prioritization of the metrics to be optimized as

per the requirements.

• A domain independent approach that is easily portable to solve the optimization problems in

several knowledge disciplines.

• An approach that is fast, scalable to larger problem sizes, accurate in terms of optimizations,

and feasible to solve real problems.

• A method that is capable of addressing the impact of randomness at several avenues. In the

context of VLSI circuit optimization this property is extremely important for addressing the

impact of process variations in multiple design components.

• An approach that is capable of inherently modeling the multi-objective optimization problems

where the objectives are competing or conflicting in nature.

• A methodology that can guarantee the optimization is performed from the perspective of each

metric, and hence satisfies the social fairness property.

Several flavors of utilitarian optimization methods have been widely applied to solve the problems

in the field of economics and finance [15]. In recent years, computer scientists have explored the

realm of utilitarian methods to solve various computer science [16–23] and computer engineering

[24–26] problems. The successful implementation of utilitarian approaches in these application areas

has benefited the engineering research community. This encouraged us to explore these methods to

solve the problems in VLSI-CAD and spatial pattern clustering.

1.2 Why Utilitarian Approaches?

The utility theoretic approaches are attractive as optimization methodologies due to some of unique

features and properties that they possess. The two variantsof the utilitarian methods are game theo-

retic optimization techniques and expected utility theorybased techniques. Game theory [27, 28] is a

microeconomic approach for visualizing a problem as a situation that consists of several players, each

player competing with all other players in the system and trying to maximize its own utility or gains

from the system. In this competitive setting, an equilibrium point is identified that maximizes the

6
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utility of each player with respect to every other player in the game. Thus, the performance criteria of

the systems as a whole are determined by a combination of the performance criteria of the individual

agents. The salient features of game theory that serve as reasons for application to the optimization

problems are:

• The situations of conflict and cooperation are most effectively modeled as games [29–31].

• Game theoretic models have simple and well defined environments for a variety of problems.

• A methodology likeNash equilibriumthat identifies a socially fair solution, perfectly comple-

ments the problems modeled as a game. The social fairness of the solution is a particularly

attractive feature from the perspective of multi-metric spatial clustering.

The expected utility theory [32] was proposed by Von Neumannand Morgenstern in 1944, as a sound

prescription for rational decision-making. This theory has been widely studied and applied in the var-

ious fields of science and engineering like political sciences, finance, economics, computer networks,

and distributed computing. The success of utility theory isattributed to the fact that it enables the

designers (or decision makes) to visualize the optimization problems from a different perspective. As

a simple example, let us consider a stochastic optimizationproblem in the mathematical programming

setting, where the objectives are to be minimized while satisfying the constraints that are randomized

in nature. In the expected utility framework, this optimization problem can be conceived as an opti-

mization problem in which the risk of failure of constraintsis minimized by maximizing the expected

utility of the constraints. In large scale stochastic optimization problems, like those in VLSI-CAD,

this may help in substantially reducing the size of the problem, as well as translating a stochastic

optimization problem to the deterministic equivalent under certain situations.

1.3 Scope and Contributions

This dissertation explores the various optimization issues currently existing in the VLSI-CAD

field, specifically at the circuit level. It also identifies the concerns for spatial data clustering from the

viewpoint of its applications in several multi-disciplinary areas. We identify the different metrics that

are required to be examined for pragmatic solutions to theseproblems. The state of the art research

is studied to evaluate the feasibility, portability and scalability of the existing solution methodologies
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for next generation technologies and emerging research disciplines. The generalized multi-metric

optimization frameworks based upon the utilitarian methods are developed to solve these problems.

The theme of this dissertation and the major contributions are summarized in Figure 1.1. A short

description of the research works that contributed to the dissertation is as follows.

Figure 1.1 Scope and contributions of the dissertation. Thetheme of the dissertation is to identify and
develop new multi-metric optimization methods for VLSI circuit optimization and spatial data and
pattern clustering.

• Expected Utility Based Optimization: Multi-objective optimization of delay, leakage power, dy-

namic power and crosstalk noise in VLSI circuits is performed via gate sizing using a method-

ology that is based on the concepts of expected utility theory and constraint risk minimization.

It identifies a deterministic equivalent model of the stochastic optimization problem using the

concepts of bounded rationality. The methodology is variation distribution independent, and

identifies solutions with high levels of utility, in the presence of scarce information about the

distribution of the process variations. The method is capable of addressing the impact of pro-

cess variations and randomness at several levels, both in the objective function as well as in the
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constraints. This approach effectively tries to minimize the risk of violation or failure of the con-

straints in the model, evaluated and controlled by an expected utility measure that is maximized

to ensure that a constraint is satisfied. The deterministic model identified using this approach is

especially attractive for optimization in large scale VLSI-CAD problems.

• Integrated Framework for Circuit Optimization: In this work, a new variation aware multi-

metric gate sizing framework has been developed, which can be used to perform optimization of

several metrics like delay, leakage power, dynamic power, and crosstalk noise etc. The proposed

framework is completely reconfigurable and generalized in terms of its capability to incorporate

new metrics and selectively prioritize the metrics depending upon the design requirements, with

minimal changes in the model. More importantly, any mathematical programming approach

can be utilized within this framework, to solve the optimization problem. The process variation

effects are incorporated as stochastic components in the delay model. An important aspect of

the proposed framework is the identification of the inter-relationships between dynamic power,

leakage power, and crosstalk noise in terms of gate sizes, and modeling them in a unified manner.

• A Microeconomic Approach to Spatial Data Clustering: A novel multi-objective clustering ap-

proach that is based on the concepts of microeconomics, specifically game theory, has been

developed in this work. This approach is capable of simultaneously optimizing multiple con-

flicting objectives. The methodology consists of three components, an iterative hill climbing

based partitioning algorithm, a multi-step normal form game theoretic formulation, and a Nash

equilibrium based solution methodology. The normal form non-cooperative game consists of

randomly initialized clusters as players that compete for the allocation of resources (data ob-

jects). The Nash equilibrium based methodology evaluates asolution that is socially fair for

all the players, and any mathematical hill climbing algorithm can be used to update the clusters

after each iteration of the game.

• Robot Team Formation: The rescue robot teams formation problem in the multi-emergency

search and rescue environments is a practical application of the microeconomic spatial clustering

algorithm being developed. In these environments, robots performing the search and rescue

operations in the field are required to be divided into teams since the power dissipation in inter-

robot communication and the robot to base station communication is high, while the robots are
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running primarily running on batteries, and each emergencylocation is required to be attended

all the time. Dropping out of all the robots servicing a locality would significantly hamper the

rescue process. Thus, in this work, robot teams are created on the basis of cluster compaction

and uniform power distribution objectives to identify decentralized robot teams with each robot

in a team closest to its communication gateway, as well as each team is equally represented in

terms of its strength (battery power).

1.4 Outline of Dissertation

The remainder of this dissertation is organized in six chapters. Chapter 2 describes the background

and the state of the art research related to the problems being addressed in this dissertation. Specifi-

cally, a short tutorial of the important concepts in expected utility theory, mathematical programming,

and game theory is presented. Also, the state of the art research in the field of variation aware circuit

optimization, and data and pattern clustering is describedin details. In Chapter 3, a risk averse util-

itarian approach VLSI circuit optimization under scarce information about the process variations is

presented. This is a post layout gate sizing approach for multi-metric optimization. Here, the expected

utility theoretic methodology is applied to convert the stochastic optimization problem to a determinis-

tic equivalent model. In Chapter 4, an integrated frameworkis developed for multi-metric optimization

of delay, leakage power, dynamic power, and crosstalk noiseconsidering the effect of process vari-

ations in the nanoscale VLSI circuits. This gate sizing framework is completely reconfigurable and

generalized to incorporate, remove or prioritize the metrics to be optimized. Chapter 5 defines the

problem of multi-objective spatial clustering in the context of novel multi-disciplinary application ar-

eas, and develops a novel game theoretic clustering algorithm. The different components of the game

theoretic modeling are explained in details and the simulations are performed to evaluate the efficacy

of the proposed method. In Chapter 6, the problem of robot teams formation in the multi-emergency

search and rescue environments is described. The game theoretic clustering algorithm being devel-

oped and discussed in Chapter 5 is adapted to solve this problem by forming teams on the basis two

optimization objectives cluster compaction, and uniform power distribution. The concluding remarks

and the suggested future work in terms of extensions to the problems addressed in this dissertation,

and other ideas for further refinements are given in Chapter 7.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we present a brief introduction of the various concepts that form the basis for the

research described in this dissertation. Specifically, we discuss the expected utility theoretic approach

and the game theory approach. These approaches are used to solve the multi-metric optimization

problems in the context of VLSI circuit design and spatial pattern clustering problems. The utility

theory is used for solving the VLSI circuit design optimization problem, specifically, gate sizing.

Game theory is applied in solving the multi-objective pattern clustering problem. Since, stochastic

and mathematical programming methods are used in the proposed solution, some background on these

topics is provided. We briefly introduce the various VLSI circuit optimization techniques available in

the literature, and present issue of VLSI manufacturing process variations effects in the nanometer

regime. A detailed discussion of the various related works for VLSI circuit optimization and spatial

pattern clustering is also presented in this chapter.

2.1 Utility Theory

A utilitarian theory forms the ethical framework for effective moral action. In this framework,

the measure of satisfaction is quantified in terms of the utility of the satisfaction, and is attempted to

be maximized by an individual. The utility is often measuredas the happiness, as the satisfaction of

preferences, or the preference utilitarianism. The philosophy behind the utility theory is to achieve the

greatest good for the greatest number. Utility theory has been used as a framework to argue for the

value of different actions. Two primary variants of the utility theory in terms of the expected utility

optimization exist in the literature. In the first form, the individuals, also known as the agents, try

to formulate and act under guidance of rules that maximize the utility if they were to be consistently

followed. Alternatively, in the second variant, the goal isto minimize negative utility rather than

maximizing the positive utility.

11



www.manaraa.com

The utility of an action or a state of environment maps the state onto a real number to describe

the degree of satisfaction from the state [33]. This notion of the utility has two important implications

in terms of the goals. First, the scenarios where the goals are competing or conflicting, the utility

function specifies the appropriate trade-off. Second, the situations where several goals are specified,

none of which can be achieved with certainty, the utility function maps the likelihood of success of

each goal according to the weighted importance of the goals.The overall utility based system can be

represented by a simple diagram as shown in Figure 2.1.

Figure 2.1 A utility based system from the perspective of a rational agent. Depending upon the sys-
tem’s current state, the agent’s satisfaction from the current state, and the agent’s action, the satisfac-
tion of the agent in the system’s next state is identified. Theagent chooses its future actions based on
the change in its satisfaction value due to its own action in the previous state.

On the basis of the number of rational agents interacting in the system, the utility theory can be

categorized as expected utility theory and game theory. In the expected utility theory, the system

assumes a single agent playing a game against the nature, whereas in game theory, multiple agents

interact with the nature and against each other in an autonomous manner.
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2.1.1 Expected Utility Theory and Risk Aversion

In an environment where the agents may not have complete control or access to the environmental

variables, a situation of uncertainty would arise. As an example, in the semiconductor devices fabri-

cated with the sub-100nm technology nodes, the environmental factors may affect the manufacturing

process significantly, thereby causing inconsistencies inthe fabricated devices. The CAD engineers

are unaware of the degree of disparity between the specifications and the actual designs. This uncer-

tainty changes the way in which an agent (or designer) makes decisions. In the presence of uncertainty,

the actions of the agents shift from deterministic actions to the preferences as a function of the outcome

probabilities of the actions. Theexpected utility functionmaps these preferences to real values.

An actiona of an agentA in the expected utility framework would have a set of possible outcomes

(also known as states)Oi(a) as a consequence of that action. The indexi ranges over the set of

outcomes. Also, corresponding to each actiona, the agentA assigns a probabilityP(Oi(a)|Do(a),K)

to each outcome. Here,Do(a) is the proposition that the actiona results to the associated outcome,

given the agentA’s information or knowledgeK of the environment. Theexpected utilityof an action

given the knowledgeK of the system is given byEU(a|K) as shown in Equation (2.1)

EU(a|K) = ∑
i

P(Oi(a)|Do(a),K)U(Oi(a)) (2.1)

Here,U(Oi(a)) corresponds the quantitative measure of the utility of the outcomeOi for the actiona.

According to the principle of maximum expected utility, therational agent should choose an action that

maximizes its expected utilityEU. This notion of utility in terms of probabilities and the outcomes

was proposed by John Von Neumann and Oskar Morgenstern in their 1944 bookTheory of Games

and Economic Behavior[32]. According to this theory, if an agent maximizes a utility function that

correctly reflects the performance measure by which its behavior is being judged, then it will achieve

the highest possible performance for itself.

2.1.1.1 Expected Utility

The utility function maps the states to the real numbers. Hypothetically, the utility of a state

could be any real number depending upon the agent’s choice, and is an arbitrary function. However, in

practice, the preferences of the agents follow a more systematic approach. In a simple economic setup,
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the utility can be considered as a monotonic preference function of the monetary values. According to

this definition, the utility of the action monotonically increases as the wealth increases in a gambling or

a lottery type of situation. However, the utility may not be alinear function of the expected monetary

value. This can be explained with a simple example. Suppose,in a game of ’deal or no deal’, you have

already won $1,000,000. At this stage, the banker asks you ifyou would like to open one more case

that may have $3,000,000. If the case has $3,000,000, you will win the whole amount; otherwise you

will go home with no money at all. In such a situation, the expected monetary value of the gamble is

0.5∗$0+0.5∗$3,000,000= $1,500,000. This value is greater than your current earnings. However,

would you be willing to play such a gamble? This is a subjective question, and it depends upon several

factors, including your current financial status without the million dollars, the improvement in the life

style a million dollars can bring, and how much you value the additional two millions if you already

have a million dollars. Thus, utility is not directly proportional to the expected monetary value.

2.1.1.2 Risk Aversion

Risk aversion is intuitively defined as situation where an agent, when faced with the choice of

comparable returns, tends to choose the less risky alternative [34]. In an expected utility framework,

this concept can be explained through the concave function graph shown in Figure 2.2. Here,X is

a random variable which can take on two values,x1 andx2. Consideringp be the probability that

x1 happens and (1− p) be the probability thatx2 happens. The expected outcomeE(x) = p∗ x1+

(1− p) ∗x2 is shown on theX axis as a convex combination ofx1 andx2. Considering au : ℜ→ ℜ

be an elementary concave utility function, as shown in Figure 2.2, the expected utility is given as

E(u) = p∗u(x1)+ (1− p)∗u(x2) denoted byB, betweenA = (x1,u(x1)) andC = (z2,u(z2)). Now,

by comparing pointsB andD in Figure 2.2, it is identified that the utility of expected income,u[E(x)]

is greater than expected utilityE(u), given by,

u[p∗x1+(1− p)∗x2] > p∗u(x1)+ (1− p)∗u(x2) (2.2)

Now, we can consider the scenario shown in Figure 2.2 as two lotteries such that one paysE(x) with

certainty and another paysx1 or x2 with probabilitiesp and(1− p) respectively. According to the

Von Neumann-Morgenstern utility notion, the utility of thefirst lottery would beU(E(x)) = u(E(x))
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Figure 2.2 A function representing the relationship between expected utility and risk aversion. In a
concave utility function, if the average returns for the agent in situations of deterministic decisions and
probabilistic decisions are comparable, the expected utility of the risk averse decisions is higher than
the risk centric decisions.

received with certainty and the utility of the second lottery would beU(x1,x2;p,1− p) = p∗u(x1)+

(1− p)∗u(x2). In this situation, even when the expected income in both lotteries is same, the obvious

decision for a risk averse agent would beE(x) with certainty.

In a VLSI circuit optimization problem under uncertainty, asimilar situation arises. The opti-

mization of the performance objectives can be improved by increasing the risk of failure of the timing

constraints, thereby resulting in an increase in unreliability of the circuit. Specifically, in this paradigm,

the marginal utility declines much more rapidly as comparedto the elementary utility function curve

as shown in the Figure 2.2. Thus, a stricter notion ofquadratic utility functioncan be used in such

scenarios. The quadratic utility function [32] is given as:

u(x) = α+ βx− γx2 (2.3)

whereα, β andγ are the coefficients of absolute risk aversion, derived to evaluate the utility function.
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2.1.2 Game Theory and Nash Equilibrium

Game theory can be defined as a collection of mathematical models formulated to study the situa-

tions of conflict and cooperation between intelligent rational decision-makers. Game theory analysis

situations in which two or more individuals make decisions that will influence one another’s welfare.

These decision makers, also known as theplayers, choose from a finite list of alternative courses of

actions, leading to well defined outcomes expressed in termsof numerical payoffs associated with the

chosen course of action for each decision maker.

Formally, modern game theory began with the publication of the seminal book by Von Neumann

and Morgenstern in 1944 [35]. In 1951, John Nash described anequilibrium concept [36] for non-

cooperative games as a configuration of strategies that ensures a win-win situation for all decision

makers. This concept of cooperation under non-cooperativeenvironments was phenomenal, and as a

result game theory has been successfully applied extensively in the field of economics, engineering

[25] [24] [16], and several other real life situations of decision making under uncertainty.

The important elements of a game are categorized as players,strategies, strategy sets, strategy

combinations, payoffs, information, and equilibrium. Theplayers are a set of rational decision makers,

each having a set of strategiesSi = {si} available with them. A strategysi is a rule that a playeri

uses to choose an action at each instance of the game. Corresponding to each strategy, a utility is

associated, which is represented as a payoff denoted byPi(s1, · · · ,sN) that i tries to maximize. A

strategy combination is an ordered sets = (s1, · · · ,sN) that consists of one strategy for each ofN

players, and one such combination that maximizes every player’s payoff in the game is identified as

an equilibrium point.

The idea behind game theory can be explained with the aid of aninteresting and a classical example

of prisoners’ dilemma. Consider a situation where the police has convicted two computer programmers

Robin and David in a case of critical data theft from the database of the company that employs them.

The police is assured that they are guilty, but they could notprove it since there are no witnesses. So,

the police is dependent upon the convicts’ testimonies to identify who is guilty. The police decides

to keep them in separate rooms for interrogation. The convicts are given only two options, confess

or refuse. The police has decided to assign different penalties for the convicts depending upon their
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independent responses, as well the combination of the responses of both convicts. The penalties for

different scenarios are as follows:

• If both convicts confess to stealing the data, the punishment is 5 years of jail term for each of

them.

• If one prisoner confesses and other refuses, then the confessor is given 1 year of jail term for his

truthfulness, and the one who has refused is penalized for 10years of jail term.

• If both convicts refuse to accept their involvement in the theft, then both of them are sentenced

for 3 years due to the lack of sufficient evidence.

Now, the situation before the convicts is complex, since they can not communicate and decide what

they should be doing. Also, each of them is afraid of the other’s position or standpoint. This situation

can be modeled as a matrix game as shown in Figure 2.3.

Figure 2.3 A simple example of two player non-cooperative normal form game. The prisoners’
dilemma in terms of the strategies (confess, refuse) and thedifferent payoffs (1 year, 3 years, 5 years
or 10 years) are shown.

In this example, the two convicts, David and Robin, are the players of the game. Each player

has two strategies, confess and refuse. The elements of the matrix game are the payoffs or utilities

associated with the strategies chosen by the players. For example, if Robin chooses his strategy of
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refusing to be involved in the theft, his punishment will depend upon the strategy chosen by David. If

David also refuses, then Robin will get 3 years of jail term, whereas if David accepts their involvement

in the theft, then Robin will be sentenced for 10 years in jail. The information available with each

player is the strategies available with the other player. A strategy combination is a tuple consisting

of one strategy corresponding to each player in the game. Onesuch strategy combination is the set

(confess, confess).

The solution of a game model is identified using an equilibrium technique. Nash equilibrium [36]

is one such technique that has been widely used to solve the game theoretic formulations. Nash

equilibrium in a non-cooperative game setting is identifiedas a point (or strategy combination) at

which no player can improve its utility by deviating from that point, considering the other players do

not deviate from that point. A Nash equilibrium in the prisoners’ dilemma game can be explained with

the aid of the Figure 2.4(a) – 2.4(c).

As shown in Figure 2.4(a), Robin, if refuses to testify that he was involved in theft, would receive

a term of 10 years in the worst case scenario, and 3 years in thebest case scenario. However, if he

confesses his involvement in the theft, would serve a term of5 years in the worst case, and 1 year in

the best case scenario. Thus, to confess his involvement is the obvious dominant strategy for him. This

is shown as the yellow shaded region in the figure. Convict David has the similar situation as shown

in the payoff matrix in Figure 2.4(b). With the similar set ofarguments, it is logical for David to also

confess his involvement in the theft.

Now, if we take the dominant strategies of both the players, the final equilibrium strategy is identi-

fied, as shown in Figure 2.4(c). Here, the purple shaded region denotes the intersection of the dominant

strategies of the two players. This point is precisely called the equilibrium point, and the strategy com-

bination (confess, confess) is the Nash equilibrium strategy. At this strategy point, if David tries to

change its strategy from confess to refuse, while Robin maintaining his position of confession, David

will only loose and will get more years in the jail term. Similar situation occurs when Robin tries

to change his strategy unilaterally. Thus, at the Nash equilibrium point each player is satisfied with

respect to every other player in the game.
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(a) Strategies and Payoffs of Robin (b) Strategies and Payoffs of David

(c) Nash Equilibrium Strategy Combination

Figure 2.4 Generation of strategy sets, identification of the dominant strategies, and Nash equilibrium
in prisoners’ dilemma game. In (a) and (b) the respective strategies and the payoffs for Robin and
David are shown. The Nash equilibrium strategy on the basis of the dominant strategies for each
player is shown in the right bottom box of (c).

2.1.2.1 Classification of Games

Games can be classified on the basis of several different criteria. Some of the important classifica-

tions of the games are given as follows.

• Number of players - 2-player (prisoners’ dilemma), N-player (finite), and infinite player games

• Number of moves and choices - finite strategy set and infinite strategies

• Degree of opposing interests - zero-sum games and general-sum games

• Degree of cooperation - cooperative games and non-cooperative games

• Number of stages - one-shot games and repeated games
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• Time dependence - static games and dynamic games

• Involvement of probability - deterministic games and stochastic games

Here, we will discuss some of these classifications, specifically the ones of our interest in terms of

solving the multi-metric optimization problems. To get detailed information on the other classification

criteria, the readers may refer to [27, 28]. In a classification based on the degree of cooperation,

the non-cooperative games consist of rational players choosing their strategies independently, with

nominal information of the strategies available with the other players. Each player plays a strategy

that is its best response to the strategy combination of the other players. Unlike cooperative games,

the coordination among the players is not forced externally, but is self-enforcing. In multi-player

situations, where external communication for cooperationis complex, and hence impractical, the non-

cooperative games are pragmatic. Non-cooperative games can be further classified as normal form

or strategic games, and extensive form games. In the normal form games, players simultaneously

choose their strategies and a strategy combination that gives the best possible payoffs to every player

is considered as an equilibrium point. Whereas, in the extensive form games, the players move in a

sequential order, and the order of play affects the final outcome of the game. Since all the players

make their moves simultaneously in a normal form game, they do not get to learn each other’s private

information.

2.1.2.2 Mathematical Representation

A non-cooperative normal form game is a finite game if the strategy setsS1, · · · ,SN are finite. Here,

N is the set of all players in the game, andSi is the set of all the strategies of playeri. The game is

being represented as:

G = (Si , pi);∀i ∈ N (2.4)

Here,pi represents the payoff function for playeri, and is given as:

pi = ∏
i≤N

Si →ℜ (2.5)

For the gameG represented by Equations (2.4) and (2.5), theN-tuple of strategiess∗1, · · · ,s∗N where

s∗1 ∈ S1, · · · ,s∗N ∈ SN, is defined as the Nash equilibrium point ofG if Equation (2.6) satisfies∀si ∈ Si
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andi = 1, · · · ,N.

pi(s
∗
1, · · · ,s∗i , · · · ,s∗N)≥ pi(s

∗
1, · · · ,s∗i−1,si ,s

∗
i+1 · · · ,s∗N) (2.6)

Qualitatively, Nash equilibrium is a socially fair, good quality solution point at which every player is

satisfied with respect to every other player.

2.1.2.3 Critique of Game Theory

Although game theory has been widely studied and applied in several important application areas,

it is often criticized for some of its properties. The primary critiques of game theory are:

• Why non-cooperative games?: If the prisoners’ dilemma gamebeing presented above is revis-

ited, a natural question that arises is to why not play a cooperative game? This is intuitive, since

in such a scenario, players may come out with a more advantageous strategy combination of

(refuse, refuse). The issue with cooperative games is that in such games the players need to

make prior commitments for cooperation. The prisoners’ dilemma game (represented byχ per

say) can be transformed into a cooperative game by a mappingξ, such thatξ(χ) is another game

that represents the situation existing where, in addition to the strategy sets specified inχ, each

player would have some wide range of options for bargaining with the other players to jointly

plan cooperative strategies. In such situations the strategy set of each player would explode

and the game would potentially become inconceivable. Another reason for not considering a

cooperative game solution is the requirement of impartial arbitrator in cooperative games, who

could perform pre-play communication with all the players beforehand. In such situations, a

considerable amount of time is required for such arbitrations, which is not pragmatic in solving

real engineering problems.

• Multiple Nash equilibriums and pareto optimality: The Nashequilibrium for a game theoretic

model consists of all the dominant strategies. However, there may be multiple Nash equilibriums

in a game, and it is possible that several Nash equilibriums may not bepareto optimal[28]. A

solution is pareto optimal, if there exist no other solutionthat can make at-least one individual

better off without making any other individual in the systemworse off. A good example for

such a situation is the Prisoners’ dilemma situation. Here,the dominant strategy and the Nash
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equilibrium point is the combination where both the prisoners confess their crimes, which is

reasonable from the players’ as well as the system’s perspective, considering that the players are

rational and non-cooperative. As evident, the solution is not pareto optimal. The pareto optimal

solution point is (refuse, refuse). However, the pareto optimality would require cooperation

among the players, existence of focal arbitrator, and a coalition formation, which is infeasible.

It is important to note that the criterion of pareto optimality does not ensure that a solution

is by any sense equitable and socially fair, which is an important criterion in multi-objective

optimization.

2.2 Mathematical Programming

A mathematical programming problem is an optimization problem, wherein one seeks to minimize

or maximize a real valued function of real or integer variables, subject to constraints on the variables.

Mathematical programming studies the following properties of an optimization problem:

• The mathematical properties of the optimization problem.

• The development and implementation of the algorithms to solve the optimization problems.

• The application of these algorithms to real world problems.

The mathematical programming is primarily performed to solve two types of problems, continuous

and discrete. The continuous optimization problems could be constrained or unconstrained. To solve

the unconstrained optimization problems, several methodslike non-linear programming, non-linear

least square optimization methods, non-differentiable optimization methods and other global opti-

mization methods are applied. The constrained optimization problems could be linear, stochastic,

non-linearly constrained or bound constrained. Several algorithms have been developed to solve such

problems [37]. The deterministic discrete optimization problems are solved using integer program-

ming methods. The stochastic optimization problems, whichcould be discrete or continuous problems,

are harder to solve, since they involve uncertainty.

Stochastic programmingis a framework for modeling optimization problems that involve uncer-

tainty. Stochastic programming methods take advantage of the fact that probability distributions gov-

erning the data are known or can be estimated. The goal here isto find some policy that is feasible for
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all (or almost all) the possible data instances and maximizes the expectation of some function of the

decisions and the random variables. More generally, such models are formulated, solved analytically

or numerically, and analyzed in order to provide useful information to a decision-maker.

Stochastic programming is a widely studied and applied optimization problem to the real world

problems since any real world problem almost invariably includes some unknown parameters. Sev-

eral algorithms and solution methodologies have been developed to solve the stochastic optimization

problems. Chance constrained programming, two stage linear programming, multi-stage linear pro-

gramming, fuzzy mathematical programming and geometric programming are a few state of the art

methods to solve stochastic optimization problems. In general terms the optimization methods in this

discipline combine the power of mathematical programming with advanced probability techniques, to

attack optimization problems that involve uncertainty. A constraint or presumption in these methods

is that the probability distributions of the random parameters are known, and cannot depend on the

decisions taken.

2.3 VLSI Circuit Optimization

In the nanometer era, the performance of a VLSI circuit is notonly determined by the the delay or

the frequency of the circuit alone. The reliability, scalability, power dissipation, energy to perform a

function, cost, yield and the time-to-market the chips are also important performance metrics. The op-

timization of these metrics is thus an essential part of designing robust, reliable and high performance

circuits. The persistent push for higher performance and reliability in much more complex designs has

led to an increasing interest in the optimization techniques. Circuit optimization primarily involves

tuning of various components of a circuit to achieve desiredchanges in the performance metrics. The

components that can be tuned, include transistors, wires, buffers, power supply voltage, and thresh-

old voltage etc. [38]. In addition to these continuous tuning techniques, various discrete optimization

methods like buffer insertion, reordering of input pins, and choice of gates from discrete libraries etc.

are also widely studied in literature. Since, in this dissertation multi-metric optimization of delay,

power and crosstalk noise is being performed, the methods that are effective for the optimization of

these metrics are reviewed. It is important to note that the framework for VLSI optimization being de-
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veloped in this research is independent of the metrics that can be incorporated for optimization. Other

performance metrics can be added in the model with minimal effort.

In a circuit, the maximum delay is defined as the total delay ofthe longest path (critical path) in

the design. Some of the prominent techniques for delay minimization include gate sizing, transistor

ordering, defining alternative logic structures, buffer insertion, reducing the voltage swing of the gates,

and interconnect wire sizing [39, 40]. In a gate sizing technique, the sizes of the gates in the path are

adjusted to minimize the delay of the path. The sizes of the gates in the entire circuit or a sub-circuit are

adjusted properly according to their capacitive loads for performance improvement. In the transistor

ordering technique, the transistors are ordered in a row andoriented in such a way that the sharing

of source and drain regions is maximized. This aids in reducing the total diffusion area and the cell

widths. Delay of a circuit can also be reduced by carefully replacing logic structures in a circuit.

For example, a function likeF = ABCDEFGHbeing implemented using 5 two input NAND gates, 2

two input NOR gates and a NOT gate can be replaced by a eight input NAND gate and a NOT gate.

Another effective technique for delay optimization is to insert buffers in order to isolate the fan-in

from the fan-out, thereby reducing the load on the critical path of the circuit. In the buffer insertion

technique, a series of cascaded inverters are inserted on interconnects between the gates. In a wire

sizing technique, the widths of the interconnect wires are sized to reduce the interconnect delays. The

techniques like multi-VDD assignment and threshold voltage scaling have also been applied for delay

minimization.

Power dissipation in VLSI circuits is primarily due to two components; static power, and dynamic

power [41]. The dynamic power dissipation is due to two sources, switching power due to charging

and discharging of load capacitance, and short circuit power due to non-zero rise and fall times of

input waveforms. The static power or leakage power dissipation occurs when the device is not active.

The three components of leakage power are sub-threshold leakage due to current from drain to source,

direct tunneling gate leakage due to tunneling of electronsor holes from the bulk silicon through the

gate oxide potential barrier into the gate, source and drainor substrate and substrate reverse biased p-n

junction leakage. Several techniques have been proposed toreduce these components of power dis-

sipation. For dynamic power reduction, gate sizing, interconnect sizing, clock gating, supply voltage

scaling and buffer insertion are primary techniques.
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Dynamic power of the circuit is minimized by sizing down the gates in the circuit. However, such

sizing technique increases the delay of the circuit. In order to optimize both delay and dynamic power,

a path based technique can be applied, where gates in the critical paths are sized-up and the gates

in the non-critical paths are sized down. Alternatively, a global optimization can be performed with

delay-power trade-off. Wire sizing technique follows a similar relationship. If the width of the wire is

increased, the resistance per unit length of the wire decreases. However, the line capacitance increases,

consequently increasing the interconnect power. In a clockgating scheme, the clock is masked such

that the switching activity of the idle blocks of the circuitis minimized, thereby reducing dynamic

power dissipation. This technique also reduces the clock power dissipation. Supply voltage scaling

minimizes the switching power dissipation. Since supply voltage has a quadratic dependency on the

switching power, the technique is effective. In this method, either the supply voltage of the non-critical

part of the circuit can be lowered in a static manner, or the supply voltage can be dynamically lowered

depending upon the performance demand of the circuit.

Leakage power minimization at the circuit level can be performed by applying techniques like gate

sizing, threshold voltage scaling, transistor stacking and adaptive body biasing. Since the gate size is

directly proportional to the average leakage power of the gate, sizing the gate reduces the leakage

power of the circuit. Assignment of high threshold voltage to some transistors in the non-critical paths

can reduce the sub-threshold leakage. The transistor stacking method inserts extra transistors (sleep

transistors) connected in the series with the pull-up/pull-down path of the gates and turns them ’off’

during the standby mode. In adaptive body biasing, the forward body bias (FBB) and the reverse body

bias (RBB) is applied to vary the threshold voltage of the transistors, thereby turning them off during

the passive mode.

The coupling of a quiet line with one or more switching lines induces noise on the quiet line. If the

noise is high, the logic of the quiet line may switch causing logic failures. This crosstalk noise can be

reduced by applying methods like wire sizing, wire spacing,wire shielding, sizing of the driver gates

of the victim and aggressor interconnects, and sizing of thereceiver gates of the victim and aggressor

nets [42, 43]. If a wire is sized up, the resistance of the wireincreases, thereby reducing the coupling

effect on it. Alternatively, if the coupled wires are spacedfarther, the coupling capacitance between

them reduces, consequently reducing the noise on each of them. In the driver gate sizing, if the victim

net’s driver gate is sized up, the signal strength on the victim net increases, resulting in a decrease in
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the coupling noise on itself. The impact is complementary, since an increase in signal strength on the

net induces higher coupling noise on the neighboring nets. Similarly, up-sizing the receiver gate of a

victim net reduces the noise on the net. However, the effect of receiver sizing is significantly smaller

as compared to the driver sizing.

Several state of the art techniques for VLSI optimization being discussed here are effective, and

have been successfully applied for optimization of either delay, power or crosstalk noise. However,

among these techniques,gate sizingis particularly interesting due to several reasons. Gate sizing

is a simple, general purpose post-layout optimization approach that can be utilized to optimize all

the important metrics like delay, power, and crosstalk noise. It does not require the incorporation

of any additional circuitry in the design, and hence incurs minimum overhead. Gate sizing at the

post-layout level does not require any circuit re-routing to be performed. Also, driver gate sizing is

the most effective technique for crosstalk noise optimization [43]. Thus, we utilize gate sizing as the

optimization methodology for multi-metric VLSI circuit optimization, considering process variations.

2.3.1 Process Variations

The aggressive scaling of devices and interconnects, the limitations of the manufacturing pro-

cesses, and the environmental noise affecting the manufacturing processes, have significantly affected

the VLSI design paradigm, resulting in a transition of the design and optimization process from the

deterministic to the probabilistic domain [5]. Such effects degrade the quality of the signals and af-

fect the reliability of the manufactured circuits. These process variations occur primarily due to two

factors.

• Environmental Factors: This includes the variations in theprocessing due to the variations in en-

vironmental factors like temperature, power supply voltage, humidity, pressure, electromagnetic

interference, cosmic rays etc.

• Physical Factors: These include the variations in the electrical and the geometrical parameters

caused due to imperfections in processing technologies like photolithography, planarization,

metal etching, polysilicon etching etc.

The physical factors can be further classified as die-to-diephysical variations and within-die physical

variations. The die-to-die physical variations cause the inconsistencies between the different dies, but
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are largely uniform within each die. Due to which, these variations are largely independent of the

design implementation and are usually modeled using worst-case design corners. The within-die vari-

ations are the variations in the device parameters within a single chip. Due to these variations, different

devices at different locations on a single die may have different device features. The variations in gate

dimensions within a die are an example of within-die variations.

The within-die variations are caused due to three types of defects.

• Random defects: The defects that are caused due to introduction of foreign particles in the wafer

during the processing. These defects can be introduced during any step in the manufacturing

process, and can result in creation of opens or shorts in the manufactured circuits.

• Systematic defects: These defects occur due to sub-wavelength lithography process, and can be

controlled by incorporating tighter control during the processing, and by applying techniques

like optical pattern correction.

• Parametric defects: Such defects occur due to variations inthe manufacturing process. As

the process technology scales down, with the scaling of the device parameters like gate oxide

thickness, gate length, interconnect spacing etc., the impact of parametric variations increases

rapidly. The relative impact of these defects for differenttechnology nodes is shown in Figure

2.5.

Another aspect of intra-die variations is that these variations exhibitspatial correlations, where

the devices that are close to each other have a higher probability of having similar device properties

than those which are placed far apart. When coupled with the process variations, these correlations

can cause prime reliability concerns. Hence, it is essential for the design tools to account for the

uncertainties, and design robust circuits that are insensitive to the process variations.

2.4 Variation Aware Gate Sizing

Several approaches for the optimization of delay, leakage power, dynamic power, and crosstalk

noise in the presence of device process variations have beenproposed in recent years. In this section,

we discuss the state of the art statistical static timing analysis (SSTA) based and mathematical pro-

gramming based approaches for variation aware gate sizing,on the basis of their strengths, as well as
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Figure 2.5 Variation impact at different technology nodes [1]. As the process technology is moving
toward lower technology nodes, the parametric variations are becoming a dominant factor in deter-
mining the total impact of process variations.

limitations at the current technology nodes. The analysis and the next generation VLSI design chal-

lenges make a strong case, for identifying new methods for multi-metric circuit optimization of the

VLSI design problems.

2.4.1 Optimization Metrics

To analyze and optimize metrics like delay, power, yield, crosstalk noise etc. in the presence

of process variations, several methods have been proposed in the literature. Since, this problem is

addressed from a gate sizing perspective, the discussion isrestricted to review only the variation aware

gate sizing methods. Gate sizing is a simple yet effective technique for circuit optimization at the post-

layout level, where-in the objective is to identify the optimal drive strength of each gate in the design.

In Figure 2.6, a taxonomy of the recent works in gate sizing, classified according to the optimization

metrics and the methodologies is presented.

• Power Optimization: Several works can be found in the literature on power optimization with

gate sizing, such as minimizing leakage power [44–46], dynamic power [47,48], and total power
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Figure 2.6 Taxonomy of the variation aware gate sizing works. The various works on the variation aware gate sizing are classified on the basis of
optimization metrics and optimization methods.
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[49–52]. In [47], a dynamic power minimization method is proposed with dynamic power

identified as a function of the gate sizes in a stochastic programming model. Similarly, in [48],

the authors have proposed a fuzzy mathematical programmingbased solution for dynamic power

optimization. Leakage power minimization under process variations is performed using SSTA

based methods [44, 45], in which continuous distributions are propagated through the paths

instead of the deterministic values to find the closed form expressions for performance. In [46],

a method to estimate the leakage current variation due to inter-die and intra-die gate length

variations is presented.

• Crosstalk Noise Optimization: The power optimization methods are primarily single metric

models that do not consider the effect of gate sizing on othermetrics such as crosstalk noise

of the circuits. At the post-layout level, interconnect coupling effects can worsen the signal

strength, leading to logic failures. Several techniques toreduce crosstalk noise have been pre-

sented in the recent years. In [42], the authors propose a linear programming based formulation

for transistor sizing to minimize crosstalk noise in circuits. In another approach [53,54], an yield

driven Lagrangian Relaxation based method identifies the upper-bound on noise for each net as

a noise constraint. The gates are iteratively sized-up to satisfy the timing and noise constraints,

and a simple linear model is evaluated for crosstalk noise minimization. In a recent work [55],

a stochastic game theoretic algorithm for post layout delayuncertainty and crosstalk noise op-

timization considering spatial correlations [56, 57] is proposed. The non-linear crosstalk noise

model used in this method is derived from [58], which accurately identifies a closer approxima-

tion of the crosstalk noise.

• Delay Optimization: Additionally, the optimization of other important metrics like delay, timing

yield and binning yield have also been discussed widely [59–61]. However, this research is

largely one-dimensional in the sense that these methods typically aim at optimizing specific

metrics and often do not consider the fact that optimizing one metric may negatively impact the

optimization of other metrics, leading to an inaccurate analysis of the complete design.
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2.4.2 Optimization Methods

SeveralSSTA based approacheshave successfully been applied for delay minimization or yield

improvement problems [57, 62–64]. These approach intuitively model delay and yield optimization

problems in a simple model. The SSTA based approaches, improve over the pessimistic worst-case

corner based modeling [61] by performing a mean-variance analysis for the total circuit delay. How-

ever, such approaches are essentially path based [65], and traditionally applied to optimize a single

parameter. An assumption in a SSTA based technique is that the complete information about the vari-

ation distribution of the design parameters is known, and the methodology is based on such assump-

tions. Several works [6,7] have assumed a Gaussian distribution. However, global sources of variation

follow a log-normal distribution more closely [8,9] as compared to the Gaussian distribution.

Mathematical programming based approacheshave been widely investigated in the literature for

optimizing several metrics. An important aspect of mathematical programming approaches for circuit

optimization is that any path based problem can be easily converted to the node based equivalent with

some sub-optimality being introduced. A geometric programming (GP) approach has been proposed

in [66] for delay optimization in the presence of process variations. Although, the approach is robust,

the objective function and the constraints are required to be posynomial functions. Thus, modeling a

generalized optimization problem in a GP framework requires converting each optimization function

and the constraints in a posynomial form, and the problem canonly be modeled for minimization of

objectives.

In another approach for dynamic power minimization under delay constraints [47], the problem is

modeled as a chance constrained stochastic program (CCP). Although CCP techniques can transform

simple problems to their deterministic equivalent models,the transformation is extremely difficult for

large scale problems. Also, the method is bounded by continuous distributions, and requires a number

of operations to be performed iteratively at each node, thusinvolving higher run times. However, if

the variation distribution information is available, the methodology can be modified to incorporate

multiple metrics for optimization. Alternatively, the stochastic programming based statistical opti-

mization techniques are reasonably fast, but more conservative in terms of yield, and hence provide

lesser savings in terms of objective function optimizations. In a recent work [48], the dynamic power

optimization problem considering process variations has been modeled in a fuzzy optimization frame-
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work. Here, the stochastic parameters are modeled as fuzzy numbers, and a crisp non-linear problem is

formulated to maximize the variation resistance (tolerance) of the circuit. The problem is then solved

using commercially available optimization solvers. Thesemethodologies typically aim at optimizing

specific metrics and often do not consider the fact that optimizing one metric can negatively impact

the optimization of other metrics, leading to an inaccurateanalysis of the complete design. The La-

grangian relaxation based methods [53] are limited to either up-sizing, or down-sizing the gates for

the optimization.

A shortcoming in the proposed methods for gate sizing considering process variations arise from

the fact that several methods [43, 47, 48] incorporate the effect of process variationsdue to only one

design parameter, like gate sizes (due to channel length, and oxide thickness). The impact of inter-

connect variations, which can cause 12-25% variations in the timing of the circuit, depending upon

the design and implementation [67, 68] can not be ignored at the deep sub-nanometer level. The pro-

cess variations can be modeled more accurately using complex and non-linear models that incorporate

more parameters, and have higher accuracy [55]. The disadvantage of such a modeling lies in the

implementation complexity.

2.5 Spatial Data Clustering

Spatial data clustering involves the grouping of objects into a set of sub-groups in such a manner

that the similarity measure between the data objects withina sub-group is higher than the similarity

measure between the data objects from different sub-groups. The object and data clustering techniques

find applications in a wide variety of scientific disciplinessuch as biology, computer vision and pattern

recognition, communications and computer networks, and information systems. As a result, cluster

analysis has received significant attention, and several customized clustering methodologies have been

developed to satisfy specific application requirements [11,12].

2.5.1 Clustering Techniques

Object clustering is a well researched problem reported extensively in the literature, including

several detailed survey papers. Jainet al. [11], and Scheunders [69] review clustering methods from

pattern recognition and image quantization viewpoint, while Kolatch et al. [70], and Berkhin [71]
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identify methodologies from the data mining perspective. Similarly, Murtagh [72], and Baraldi [73]

surveyed various hierarchical, and fuzzy and neural clustering algorithms respectively. For a detailed

discussion and survey of different surveys, one is referredto [12].

Clustering techniques can be classified on the basis of several criteria, such as the principles, type

of data, shape of clusters, form of final partitions, distance measure, and the number of objectives.

Here, we will limit the discussion to partitioning of data sets on the basis of clustering objectives. The

three major groups of clustering objectives are compaction, connectedness, and spatial separation.

The compaction objective attempts to identify clusters with minimum intra-cluster variation. The

KMeans algorithm [74] is the simplest and the most widely mathematical method used in this category.

Other algorithms include average-link agglomerative clustering [75] and model based approaches [76].

Clustering with an objective of maximization of connectedness ensures that neighboring data items

share the same cluster. The density-based methods [77], andsingle-link agglomerative clustering

methods [75] implement this principle to identify clusterswith arbitrary shapes. In spatial separation

based methods, the objective is to maximize the inter-cluster separation. However, it provides little

guidance during clustering and may produce trivial results. Additionally, an important criterion that

has received significant attention recently in the domain ofdata clustering is equipartitioning or load-

sharing [78]. Load-sharing methodologies have been widelyresearched in the field of distributed

systems [79, 80], but did not receive much attention in clustering domain until recently. The new

application domains like ad-hoc networks [81,82] and emergency resource deployment require clusters

with almost equal number of data objects per cluster to satisfy the constraints.

From the clustering methodologies perspective, several heuristics based techniques have been de-

veloped in addition to the mathematical clustering methodologies. This includes simulated anneal-

ing [83], evolutionary algorithms [84–86], tabu search [87], and ant colony optimization [88]. Also,

hybrid approaches that combine different algorithms have been proposed in literature [85] [84]. Such

techniques are primarily used for feature selection in unsupervised classification, and are largely lim-

ited to single objective optimization. The multi-objective clustering problem has been solved using

the following principles.

• Ensemble methods: Here, the initial ensembles are created by clustering the data either mul-

tiple times using the same algorithm (with different initializations or using bootstrapping) or
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using complementary clustering techniques [89]. Then, thesolutions are combined to create

ensembles using expectation maximization or graph based approaches [89]. However, sucha

posteriori integration of single objective clustering results do not exploit the real strength of

simultaneous multi-objective optimization.

• Pareto optimization: A feasible solution is pareto optimalif there is no other feasible solution

that is strictly better. Multi-objective pareto optimization [86, 90] performs simultaneous opti-

mization of complementary objectives, and hence, is betterthan the ensemble based methods.

• Microeconomic methods: The situations of conflicting objectives can be naturally modeled in a

game theoretic setting. The problems can be modeled in a framework consisting of players with

conflicting objectives competing to optimize their utilities [27,28]. The game is solved using the

Nash equilibrium based methodology that identifies a socially fair solution. The social fairness

ensures that every player is satisfied with respect to every other player.

Microeconomic approaches have been applied to a wide spectrum of problems in the domain

of computer science. Murugavelet al. [25] developed auction theoretic algorithms in VLSI design

automation for simultaneous gate sizing and buffer insertion problem. Hanchate [24] applied game

theoretic concepts for simultaneous optimization of interconnect delay and crosstalk noise through

gate sizing, while Gupta and Ranganathan [16] implemented game theory for resource allocation and

scheduling in the field of multi-emergency management. In grid computing, negotiating agents have

been used for leasing of resources using such models [21, 22]. Similarly, Grosuet al. [23, 91] used

cooperative games and the Nash bargaining solutions for load balancing in distributed systems, and

Lazar [20] implemented auctions for optimal bandwidth allocation in wired and wireless networks.
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CHAPTER 3

EXPECTED UTILITY BASED CIRCUIT OPTIMIZATION

Aggressive technology scaling has adversely affected the circuit optimization process in two im-

portant ways. The impact of process variations in several components, coupled with multi-fold in-

crease in the design complexity has resulted in a situation that requires the circuit optimization tech-

niques to possess important features like accuracy of optimization, incorporation of process variation

effects due to various sources in a single model, and fast execution time. Also, in contrast to the

optimization techniques that are based on specific parametric variation distributions (like Gaussian),

these circuit optimization techniques should be variationdistribution independent. In this chapter, we

present a novel approach for circuit optimization in the presence ofscarce informationabout the dis-

tribution of the process variations. This algorithm reliesupon the concepts of utility theory and risk

minimization for multi-metric optimization of delay, dynamic power, leakage power, and crosstalk

noise, through the gate sizing technique. An important contribution of this work is the identifica-

tion of adeterministic linear equivalentmodel from a fundamentally stochastic optimization problem,

ensuring high levels of expected utility. The algorithm achieves significant speedup in the optimiza-

tion process for large circuits. This algorithm can addressthe impact of process variations at several

levels including device variations, interconnect variations etc., and is independent of the underlying

variation distribution. Using the concepts of bounded rationality, this method minimizes the risk of

constraint shortfall in a linear programming setup. The experimental results indicate that the algorithm

is efficient, and a comparative study with an existing gate sizing technique shows that our method is

multi-fold faster as well as comparable in terms of the optimization results.

3.1 Issues in Circuit Optimization

The scaling of process technology in sub-nanometer regime,and the apposition of Moore’s law

[92] has affected the realm of CMOS design and optimization process. Due to the aggressive tech-
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nology scaling, the impact of device process variations on the design process has aggravated, and

consecutively, reliability and performance of the fabricated circuits have degraded. One reason for

such an effect is that, at the lower technology nodes, the parametric variations in other design parame-

ters have sizable impact on the circuit performance. For example, in sub-65nm designs, in addition to

the gate size variations (oxide thickness, channel length), the variations due to interconnects and vias

have sizable impact on the design. Due to these variations, the VLSI design optimization process has

switched from the deterministic domain to the stochastic domain in the sense that the sizes of gates,

wires etc. are no longer a deterministic quantity, but rather, a distribution. The state of the art research

in recent years has addressed the circuit optimization process primarily through the statistical static

timing analysis (SSTA) based approaches and mathematical programming approaches.

Various SSTA based approaches are variation distribution dependent, and several works have con-

sidered the variation sources of components as Gaussian distribution [6,7]. However, this assumption

has been invalidated by some recent analyses [8], accordingto which the process variations due to

different design parameters follow different distributions. For example, in [93] the authors have iden-

tified that the global sources of variation follow a log-normal distribution more closely as compared

to the Gaussian distribution. Hence, new methods for circuit optimization that are independent of the

underlying variation distributions need to be explored.

Another aspect of the rapid progress in the fabrication technology is the multi-fold increase in

the density of the VLSI circuits, resulting in larger and more complex designs. This issue, although

independent, has a coupling effect with the process variation impact in the sense that it further worsens

the circuit optimization process. The stochastic optimization techniques are inherently slower than

their deterministic equivalents for obvious reasons. Thisis aggravated by the ever-growing size of the

designs, and presents the designers with a challenge of identifying optimization methodologies that

are faster, can address the effects of process variations, and are yield efficient.

In the circuit optimization domain, the optimization of a single metric may introduce some sub-

optimality in the values of other metrics. Although, at higher technology nodes, the impact may

be negligible, however, such assumptions are not true for nano-scale designs. Thus, a single metric

optimization that results in a performance shift from one metric to another is not practical at this level.

As a simple example, if an optimization is performed with an objective of crosstalk noise minimization,
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the resulting design may not be low power dissipating. Thus,another challenge in circuit optimization

is the quest for methods and solutions that are vertically aswell as horizontally integrated [14].

The study of the existing research in circuit optimization at the post layout level, as discussed in

Section 2.4, raise similar issues that need to be addressed in developing next generation optimization

methods. These can be summarized as follows:

• Most of the works perform a single metric optimization of either delay, power, or crosstalk noise.

However, such optimizations are no longer adequate for nanometer designs, and new modeling

techniques for multi-metric optimization are required to be developed.

• Several methods assume the process variations to follow certain distributions and are developed

to work specifically with those distributions. However, such assumptions are not valid for sev-

eral variations sources. An important aspect of the next generation VLSI optimization is to

identify methods that are variation distribution independent.

• The recent analysis on the variation distribution of the various variation sources identify that the

variations do not follow the same distributions as were identified in the preliminary analysis.

Thus, the methods that are capable of performing optimization under scarce information about

variation distribution are desirable.

• Due to the increasing complexity and size of the VLSI circuits, the circuit optimization process

has become slower. Due to the process variations, the optimization process has transitioned from

certainty domain to the uncertainty domain, adversely affecting the optimization time. Thus, an

accurate and fast stochastic optimization technique that could incorporate the impact of process

variations through a simple yet effective modeling is required to be developed.

• With the increasing integration density, the sizes of the circuits are increasing significantly. A

fast optimization method is thus required for practical solutions to the large scale VLSI design

optimization problems.

• With the scaling of technology, process variations in othercomponents of design are rapidly

becoming evident. A modeling technique that can address theimpact of process variations

at various levels, without complicating the modeling wouldscale well for the next generation
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circuit optimization problems. A generic circuit optimization model capable of incorporating

the impact of parametric variations due to several factors is thus desirable.

In this work, we develop a novel expected-utility theory based methodology for optimization of mul-

tiple performance metrics through gate sizing technique. This approach effectively tries to minimize

the risk of violation or failure of the constraints in the model, evaluated and controlled by an expected

utility measure that is maximized to ensure that a constraint is satisfied. The modeling assumes the

availability of limited information about the system, i.e.only the mean, and standard deviation of

the process variation parameters is available, and not the actual distribution. A linear programming

model is identified using these values, and is solved for optimal solution. This methodology is capable

of coping with the scant information, evaluates a deterministic equivalent model which is important

for large scale problems, and can address the variability inseveral modeling parameters. The key

contributions of the algorithm are:

• Using the concepts of constraint risk aversion and minimization, it yields a deterministic equiv-

alent of the inherently stochastic optimization problem, while ensuring high utility levels.

• Performs optimization in the presence of scarce information about the variation distribution. In

terms of scarce information, only the mean and the standard deviation, and not the complete

information about the underlying distribution are required.

• Performs simultaneous optimization of multiple metrics. The metrics considered in this work

are delay, leakage power, dynamic power and crosstalk noise. The inter-relationship between

these metrics in terms of gate sizes is identified and modeledin a mathematical programming

model.

• Incorporates the impact of process variations due to gate sizes as well as interconnects.

The resulting deterministic problem is significantly faster than the corresponding stochastic problem,

and achieves high timing yields. Also, high level of utilityis obtained by controlling the risk from

each constraint in the model. The process variation effectsand the randomness can be incorporated in

the model at various levels including the variations in the gate sizes within the delay models, the inter-

connect variations, as well as the variations in objective functions. The impact of spatial correlation is

also modeled in the optimization methodology using a grid based correlation model [62].
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The rest of the chapter is organized as follows. The detaileddescription of the expected utility

based deterministic modeling of a general stochastic optimization problem is presented in section 3.2.

In section 3.3, delay, power, and crosstalk noise models used in this work are briefly visited. The

models for delay and power have been adapted from literature, while a novel crosstalk noise model

has been developed in this research, and is discussed. Also,a relationship between the models in

terms of gate sizes is derived in this section. Section 3.4 presents the details of the transformation of

stochastic gate sizing problem to the equivalent deterministic model. Experimental results for different

scenarios and sensitivity analysis of the algorithm parameters are discussed in section 3.5.

3.2 Expected-Utility Based Modeling

In this section, the methodology to convert a stochastic optimization problem to a linear determin-

istic equivalent using the concepts of expected utility maximization is presented. In this algorithm,

different possible scenarios for a random constraint satisfaction are analyzed in terms of the quadratic

utility function. The problem is then converted to a utilitymaximization constrained deterministic

model.

A general stochastic optimization problem is given by (3.1), subject to the random constraint (3.2),

along with the set of non-random constraints, and the non-negativity conditions.

min Z=
n

∑
j=1

zjsj ;∀sj ∈ S (3.1)

s.t. ai =
n

∑
j=1

ai j sj ≥ bi ;∀i ∈M (3.2)

Here,sj is the jth design parameter to be optimized,zj is the weight (unit cost) ofsj , which by itself

could be a random value.ai j sj is a randomith constraint corresponding to the parametersj and,bi is

the random constraint satisfaction value.S is the total number of design parameters to be optimized,

andM is the total number of random constraints in the problem.

Now, from (3.2), the critical random variable for the randomconstrainti can be defined as:

ηi = (ai −bi)/b̄i ;∀i ∈M (3.3)
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where,b̄i is the mean value of allbi ’s. Taking the first and second moments ofηi , we get the mean for

the constrainti as:

ηi = (
n

∑
j=1

āi j sj − b̄i)/b̄i (3.4)

and the variance as:

σ2
i ≤ (1/b̄i)

2(
n

∑
j=1

σi j sj + σbi)
2 (3.5)

where,σi j andσbi are the respective standard deviations ofai j andbi .

An effective way of controlling the risk of failure of a constraint is by maximizing the expected

utility of the constraint. The assumption of scarce information states that only the mean and the

standard deviation values, and not the complete information about the distribution for each random

variable are available. Also, in the context of scarce information, it is assumed that therisk of failure

significantly exists, i.e. the negative value ofηi can occur with significant probability, and thus our

goal is to minimize that by maximizing the utility value. In the context of gate sizing problem, it

corresponds to the situations where the delay constraints are not met due to the variation effects, and

consequently affecting the yield. For the justifications and the detailed descriptions of the technical

information that follows, please refer to Ballestero’s paper [94].

The decision maker’s utility can be given by the standard quadratic Von Neumann and Morgenstern

utility function [32] for ηi as:

Ui(ηi) = α+2βηi− γη2
i (3.6)

η̄i > 0;∀i ∈M

whereα, β, andγ are the parameters to be determined. In (3.6), there are three possible conditions:

• A shortfall, whereηi < 0 and the constraint is not satisfied

• A zero shortfall, whereηi = 0, and reflects a critical situation where the constraint mayor may

not satisfy depending upon the randomness ofηi

• A surplus, whereηi > 0, and the constraint is safely satisfied.

These possibilities and their utilities are pictorially described in Figure 3.1.
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Now, for a shortfall, the utility (3.6) decreases rapidly asthe η increases, but the value is still

positive till α > 2βηi− γη2
i . This interval is shown as ’bearable shortfall’ region in Figure 3.1. So, the

greatest bearable shortfallη∗i , which is a very small value, can be expressed as a function ofthe mean

value ofηi (η̄i), given by

Ui(η∗i ) = α+2βη∗i − γη∗2i (3.7)

α+2βλiη̄i− γλ2
i η̄i

2 = 0

whereλi is a positive parameter close to zero, since the greatest bearable shortfall is a very small value.

From the first derivative of utility (3.6) with respect toηi , we get

U
′
i (ηi) = 2(β− γηi) > 0 (3.8)

As the utility monotonically increases withηi (which is negative), less shortfall is preferred to more

shortfall.

In case of zero shortfall, the utility is given byα. At this critical point, the randomness ofηi

decides if the constraint is met or not. A surplus is thus preferred by the decision makers since the

zero shortfall is a random value at the edge. So, asecurity marginin terms of small surplus is preferred.

However, a large surplus value is not good since it can adversely affect the achievement of the objective

goals. The security margin is shown as the shaded region in the Figure 3.1. A utility maximization

function is derived by substituting the values ofα, β, andγ in (3.6).

Now, if the first derivative of utility given in (3.8) is equated to zero for maximal value ofηi, we

get,

ηimax = ψi = β/γ (3.9)

Substituting the values in (3.7), we get

β/γ = λ2
i η̄i

2 +2ψiλi η̄i (3.10)

α/β = (λ2
i η̄i

2 +2ψiλiη̄i)/ψi (3.11)

41



www.manaraa.com

Figure 3.1 Utility curve for a random function. The possiblescenarios of shortfall, zero shortfall and
the surplus are shown here. The shaded region shows the security margin for random functionη,
whose value is maximized when the first derivative of the expected utility function is equated to 0.

These values correspond to the greatest bearable shortfall, the mean, and the surplus of minimum

utility. Now, the overall maximum utility value can be derived with respect to the mean value as

Uimax = Kiη̄i ≈ η̄i (3.12)

The value of K is irrelevant here, since the utility value is just an index. Now, Putting the values ofα,

β, andγ in (3.6), we get the maximum utility as,

η̄i−α
α

=
ψ2

i

(λ2
i η̄i

2 +2ψiλi η̄i)
(3.13)

Now, for a problem in which the shortfall is unacceptable, such as gate sizing, the utility for

shortfall is 0. Thus, in Figure 3.1, the bearable shortfall area limits to 0, and henceα = λi η̄i. Now,
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substituting this value in (3.13), we get

ψi ≈ 2η̄i ;asλi 0. (3.14)

In the optimization problem, the expected utility (EU) for each random constraintai is to be kept

at a high level to assure that the solution points are identified by satisfying the constraints. This is

mathematically expressed in terms of first and second derivatives as:

EUi(ηi) = Ui(η̄i)+0.5U
′′
i (η̄i)σ2

i (3.15)

= α+(2ψi η̄i− η̄i
2)γ−σ2

i γ

A parameterω, symbolizing the utility value (an index) can be introducedhere such that:

α+(2ψiη̄i − η̄i
2)γ−σ2

i γ > ωbα+(2ψi η̄i− η̄i
2)γc (3.16)

whereω is close to unity. The constraint (3.16) ensures that the expected utility of the constraint is

close to unity, and is satisfied.

Now, solving (3.16) forσ2
i , we get,

σ2
i < (1−ω)(3+ λ2

i +4λi)η̄i
2 (3.17)

≤ 3(1−ω)η̄i
2; η̄i > 0

This equation gives a clear relationship between the variance and the mean in terms of expected utility.

These relationships are then utilized in identifying a deterministic model, as discussed next.

3.2.1 Deterministic Modeling

In a mean-variance approach for the expected utility maximization problem, the general minimiza-

tion problem described in (3.1) is converted into an equivalent maximization function of the expected

utility, subject to the parametric variance constraints. The expected utility maximization function can
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be given as:

max Λ = C−Z = C−
n

∑
j=1

zjsj (3.18)

Here, C is a large positive constant. Also,Z̄ =
n

∑
j=1

z̄jsj > 0, since no resource is free. Thus, the

equivalent minimization problem becomes,

min
n

∑
j=1

z̄jsj (3.19)

subject to the following constraints,

• Constraints (3.17), as developed earlier,

n

∑
j=1

σi j sj + σbi <
√

(1−ω)(3+ λ2
i +4λi)(

n

∑
j=1

āi j sj − b̄i) (3.20)

<
√

3(1−ω)(
n

∑
j=1

āi j sj − b̄i);∀i ∈m

• Parametric variance constraint corresponding to the mean value objective function,

n

∑
j=1

σzj sj ≤ ρ
n

∑
j=1

z̄jsj (3.21)

The parameterρ corresponds to the value ofcoefficient of variation, if that information is avail-

able. This information is required only in situations when the objective function itself has ran-

dom parameters.

• The set of non-random constraints, and the non-negativity conditions in the original optimization

problem.

3.3 Parametric Models

In this section, we would present the models corresponding to each optimization metric, delay,

leakage power, dynamic power and crosstalk noise. The delayand power models have been adapted

from the literature, whereas a novel crosstalk noise model has been developed as part of this work.

This crosstalk model identifies noise as a linear function ofthe sizes of the driver gates. The dis-
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cussion focuses on identifying a relationship between these metrics, and formulates the mathematical

programming models required for optimization. Also, the device level and interconnect process vari-

ation are briefly visited.

3.3.1 Delay, Process Variations and Spatial Correlation

Reducing the size of a gate (saysi), reduces the intrinsic gate capacitance of gatei, the power

consumption, and the fan-in load capacitances ofi. In the linear delay model [95], the delay is modeled

as a function of the gate sizes, as shown in (3.22).

di = ai −bisi +ci ∑
j∈ f oi

sj (3.22)

where,di is the delay of gatei, si is the size of gatei, andsj corresponds to the sizes of all the fan-

out gates ofi. The coefficientsai ,bi ,ci are empirically determined by extensive SPICE simulations

for each gate in the standard cell library for all combinations of sizes and fan-out. Specifically,bi

corresponds to the impact of channel length (Le f f) on the delay of a gate, andci corresponds to the

impact of oxide thickness (tox)on the delay. Thus, the delay model incorporates the impactof device

process variations.

The uncertainty due to parameter variations in gate sizes ismodeled according to (3.23), which is

expressed in terms of nominal delay (di), and random parametersXj andXr , determining the correlated

and independent variations respectively.

D = di +
n

∑
j=1

d jXj +drXr (3.23)

Here,Xj models the principal components of correlated random variables with the correspondingd j

values evaluating the sensitivity of delay.Xr ∼ N(0,1) models the random component of variations in

all process parameters lumped into a single term, anddr is the standard deviation in delay due to these

random variations. The magnitude ofd j anddr is determined by extensive simulations.

In the linear delay model, only the process variation effects in the gate sizes (Le f f andtox) are incor-

porated, but not the interconnect variations. The interconnect variations in today’s gigahertz designs

are high, and can cause up to 25% variation in the clock skew, as shown in a paper by Liuet al. [68].
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Also, these variations can not be incorporated in a simple nominal-worst case type of analysis. So,

in this model, the effect of the interconnect variations areaddressed in a mean-variance approach at

the timing constraints level. The optimal delays identifiedthrough an unconstrained delay minimiza-

tion as a first step in the optimization process are used as constraints for simultaneous optimization of

power and crosstalk noise. We incorporate a conservative 10% variance around the mean of the best

case timing values, corresponding to the interconnect variation effects.

The spatial correlations are modeled using a grid based correlation model proposed in [62]. Ac-

cording to this modeling, the complete design is divided into different number of regions. The gates

that are in same region are highly correlated and the variation effects on all of them are similar, whereas

the variation effects on the gates that are in different regions are different and are less correlated. These

effects are incorporated in (3.22) to evaluate the values ofbi andci , approximating the variations in

channel length and gate oxide thickness respectively.

3.3.2 Leakage and Dynamic Power

The power models proposed in [51] for dynamic and leakage power are adapted in our optimization

formulation. The dynamic power dissipationPd(i) of a gatei in each clock cycletc depends upon the

transition probabilityt pi , the power supply voltageVdd, and the load capacitanceLi. Load capacitance

on a gatei is given by (3.24).

Li = Wi + ∑
k= f oi

Ci(k̄)sk (3.24)

whereWi is the wire capacitance, andCi(k̄) is the gate capacitance of the unit sized fan-out gate. The

equation for dynamic power dissipation can be given as (3.25).

Pd(i) = t pi ∑
k= f oi

Ci(k̄)skV
2
dd/(2tc) (3.25)

The average leakage power dissipationPl (i) of gate i as a function of its sizesi , and the transition

probabilities are given by (3.26).

Pl (i) = [∑
r

P(i, r)Il (ī, r)]siVdd (3.26)
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where,Il (i, r) is given as the leakage current of gatei for the input patternr, P(i, r) is the leakage

power for gatei corresponding to the input patternr, Il (ī, r) is the leakage current for the unit sized

gatei and input patternr, si is the size of gatei, andVdd is power supply voltage.

From (3.25) and (3.26), it is identified that the leakage power of a gate is directly proportional to

its size, and the dynamic power is proportional to the sum of the sizes of its fan-out gates.

3.3.3 Crosstalk Noise

The coupling capacitance effects in the circuits are substantial, and present a major threat to the

reliability of the designs. They induce crosstalk noise on the coupled nets leading to timing yield

failures. Although, the effect of crosstalk noise on a net can be reduced by using techniques like wire

sizing, wire shielding, wire spacing, driver sizing (victim and aggressor), and receiver sizing (victim

and aggressor), the most effective technique for reducing the crosstalk noise at the post-layout level

is primarily driver sizing. In this technique, the driving gate of the net (often referred as thevictim

net), and all other driver gates of the nets that have a coupling effect on that victim net (referred as

aggressor nets) are sized. The up-sizing of the gates increases the signal strength on corresponding

net, and hence reduces the coupling effects.

Figure 3.2 shows a simple example of the noise on a net in a single victim-aggressor pair setting.

Here, G1, G2, G3, and G4 are the gates sizes, C1 and C2 are the coupling capacitances between the

wires, and Net1 and Net2 are the internal resistances. As discussed in [43], the major contributors to

the crosstalk noise on a net are the sizes of the victim driver(G1), and aggressor driver gates (G2).

If the size of the driving gate of the net is increased, the signal strength on the net increases, thereby

reducing the coupling noise on the net. Also, if the size of the driver gate of the coupled net is

decreased, the noise on the victim net decreases. However, such down-sizing will increase the noise

on the coupled net. Similarly, the up-sizing of the victim driver will increase the noise on the coupled

nets. Thus, the sizing has symmetric effects on the coupled nets, and a gate is an aggressor as well as

a victim at the same time.
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Figure 3.2 A coupling structure with single victim-aggressor pair setting. Here, G1, G2, G3, and G4
are the four gates, Net1 and Net2 are the two nets, and C1 and C2correspond to the two half-coupling
capacitances between the nets. For the victim net, Net1, G1 is the victim driver gate and G2 is the
victim receiver gate. G3 is the aggressor driver gate for Net1 and G4 is the aggressor receiver gate for
Net1.

The relationship between the sizes of the driving gates of the coupled nets is incorporated in

formulating a simple crosstalk noise model. Here, the crosstalk noise on a netNi is given as (3.27)

Ni = Fi( ∑
j∈coupledsi

(si −sj))∀si ∈ n (3.27)

where,si is the size of the driving gate of the net,j is the set of all the coupled nets corresponding to

i, andsj is the size of the driver gate of the coupled net in ann-gate design. Hence, for every gate, the

noise on its fanout net is a function of the total cross-coupling capacitance on the net.

The effect of crosstalk noise in a circuit can also be minimized at another level by incorporating

the noise margin constraints in the model. These constraints control that the maximum noise a net can
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tolerate. In the present setting, the maximum tolerable noise on netj is given by (3.28).

U j = H( ∑
k= f oj

(l j −uk))∀sk ∈ coupled(sj ) (3.28)

where,l j anduk correspond to the minimum and the maximum size of the gates available in the cell

library.

3.4 Stochastic to Deterministic Gate Sizing

In this section, a relationship between the dynamic power, leakage power, and crosstalk noise, is

first identified as a function of gate sizes, and a gate sizing approach is formulated in a mathematical

programming model. These metrics are incorporated in the objective function, with the delay and noise

tolerance as the constraints. The impact of process variations in different design parameters such as

gate size, and interconnects is addressed in the delay constraints. Once the problem is formulated as a

stochastic model, it is converted to the linear deterministic mean-variance equivalent model using the

results from the methodology discussed in Section 3.2.

3.4.1 Stochastic Optimization Problem

To formulate the objective function for the multi-metric optimization problem, a relationship be-

tween the leakage power, the dynamic power, and the crosstalk noise is derived as a function of the

size of gates in the design. In section 3.3, we derived these relationships independently, which can be

summarized as follows:

• In Equation 3.25, it is identified that the dynamic power dissipation of a gate is primarily affected

by the total size of its fan-out gates in the circuit. Thus, for a gate (sayi), the total number of

gates its fan-in nets are connected to determine the impact of the gatei on the dynamic power

of the gates that are in its fan-in. Hence, the weight for sizing this gatei is proportional to the

number of gates that it is connected to in their fan-out.

• From Equation 3.26, it is shown that the leakage power of a gate is directly proportional to the

size of the gate, and hence has a direct impact. So, increasing the size of the gate would increase

the leakage power dissipation of the circuit.
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• The crosstalk noise on a net has an inverse relationship withthe size of its driver gate. If the

driver gate is sized up, the signal strength on the net increases, and hence the crosstalk noise on

the net reduces. However, the up-sizing of the gate has an adverse effect on the coupled nets.

By up-sizing the driver gates of the coupled nets, the noise on their corresponding output nets

can be reduced.

These performance metrics are now modeled in a single objective function, which is optimized in the

presence of delay constraints. The impact of these parameters on the size of the gate is incorporated by

multiplying the dimensionless normalized coefficientsκ, ν, andξ, referring to the impact of a gate size

on the leakage power, dynamic power, and crosstalk noise respectively. The coefficientκ is directly

proportional to the size of the gate, and coefficientν is a function of the normalized impact of the

gate size on the gates that are in its fan-in. So if a gatei is in the fan-out of a large number of gates,

the impact of up-sizingi will be higher for the circuit. However,ξ is inversely proportional to the

size of the gate, and its normalized value is a function of themaximum coupling capacitance of its

corresponding net with the aggressor nets.

The objective function for the optimization problem is given by the following equation:

Minimize GS=
n

∑
i=1

(κsi + νsi−ξsi) (3.29)

where,si is the size of the gatei, andn is the total number of gates in the design.

Now, to derive the delay constraints for the multi-metric optimization problem, the deterministic

best case delays for each gate in the paths are identified by performing a linear programming (LP)

optimization under the path delay constraints (3.22), and the noise margin constraints (3.28). Since

delay optimization is the primary objective in any circuit optimization technique, the delay is optimized

as a pre-processing step. As shown in (3.30), the delay (tspec) is the objective function, which is

minimized to identify the best possible circuit delay. The design constraints in terms of the node

delays in the paths form the constraints for the problem. Specifically, the constraints ensure that a gate

i+1, that is connected in the fan-out of another gatei, has a delay greater than the total delay of the path

till gate i and the internal gate delay ofi. The nominal (mean values) case delay coefficients are used

during this optimization. This deterministic optimization solution generates the delay specifications
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for all the paths in the design, which are used as constraintsin the next steps.

min tspec (3.30)

s.t. ati(p)+di ≤ ati+1(p)∀i ∈ n;∀p∈ P

di = ∑
i∈p

(ai − b̄isi + c̄i ∑
j∈ f oi

sj)

l i ≤ si ≤ ui∀i ∈ n

where,ati(p) is the arrival time at the gatei in path p, di is the internal gate delay ofi, andati+1(p)

is the arrival time at the next gatei + 1 in the pathp. The valuesb̄i , and ¯ci are the mean parameter

coefficient values, andP is the set of all the paths in the design.

After the delays are calculated, the multi-metric optimization problem is formulated for simultane-

ous optimization of crosstalk noise, leakage power, and dynamic power under delay and noise margin

constraints. The stochastic multi-metric optimization problem is given as (3.31).

min GS=
n

∑
i=1

(κi + νi−ξi)si (3.31)

s.t dp≤ tspec∀p∈ P

dp = ∑
i∈p

(ai −bisi +ci ∑
j∈ f oi

sj)

Ni ≤Ui∀i ∈ n; l i ≤ si ≤ ui∀i ∈ n

This optimization problem is stochastic in nature, sincedp contains the parametric variation coeffi-

cientsbi andci corresponding to the gate size variations. Also,tspec is a random parameter since the

variations due to interconnects are not accounted. The interconnect variations can be incorporated in

the model by consideringtspecas a distribution rather than a number.

The next step in the problem is to convert this stochastic problem into an equivalent deterministic

problem based upon the concepts of expected utility maximization and risk minimization, discussed

in Section 3.2.
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3.4.2 Deterministic Equivalent Model

If the objective function contains random variables, the expected utility approach can be used to

transform the original stochastic optimization problem tothe deterministic equivalent model, either by

minimizing the variance subject to mean value constraints,or by maximizing the mean value subject

to the parametric variance constraints, as discussed in theEquations (3.18– 3.21). In the gate sizing

problem, this corresponds to the randomness in the parameters κ, ν andξ. The equivalent objective

function for such modeling then becomes (corresponding to Equation (3.19)),

min
n

∑
i=1

(κ̄i + ν̄i− ξ̄i)si (3.32)

whereκ̄i, ν̄i , ξ̄i correspond to the mean values of the parameters. In case of non-randomκ, ν andξ,

the deterministic values will correspond to the mean values.

The constraints for the new gate sizing problem under the scarce information, and utility maxi-

mization scenario are derived as follows:

• The linear proxy constraints in terms of variance of the random parameters, corresponding to

the constraints derived in Equation (3.20). Please note that in this work we have considered a

10% standard deviation in thetspecvalue from its mean value identified during the first step of

the optimization process. The approximation is more conservative than the one derived in [68].

A more accurate estimate can be incorporated without any modifications in the model.

σdp + σtspec <
√

3(1−ω)(dp− tspec);∀p∈ P (3.33)

σdp ≡∑
i∈p

(σai −σbi + σci ∑
j∈ f oi

si)

dp≡∑
i∈p

(ai −bi +ci ∑
j∈ f oi

si)

The value of the utility maximization parameterω can be experimentally determined, and can

be kept at a high level of 0.9, 0.92 or even 0.95.

• The parametric variance constraint corresponding to the mean valued objective function is given

by,
n

∑
i=1

(σκi + σνi −σξi
)si ≤ ρ

n

∑
i=1

(κi + νi−ξi)si (3.34)
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whereρ is the coefficient of variation. This constraint is requiredonly in situations where the

objective function also has random parameters (say random cost parameters) in it. However, in

this work, the modeling does not consider the randomness in the objective function parameters,

and hence this constraint is not utilized at all. If the coefficients in the objective function are

considered as random during the modeling, then experimentation with different values ofρ

provides a complete frontier of the optimal solutions.

• The Non-random constraints, and the conditions corresponding to the available gate size ranges

are maintained.

Ni ≤Ui ;∀i ∈ n (3.35)

l i ≤ si ≤ ui ;∀i ∈ n (3.36)

Thus, the stochastic problem defined in Equation (3.31), is converted into a deterministic equiv-

alent multi-metric model given by Equations (3.32), (3.33), (3.34), (3.35) and (3.36) which can be

solved using any linear programming optimization tool.

3.5 Experimental Results

In this section, we present the simulation results to verifythe efficiency, accuracy and efficacy

of this methodology. First, a sensitivity analysis is performed to evaluate the sensitivity of the ex-

pected utility assurance constant (ω) with reference to the timing yield and the optimization of the

metrics. The analysis helps in identifying the optimum value of ω corresponding to the optimization

requirements. The risk averse optimization algorithm is then evaluated on the benchmark circuits for

optimization of different metrics and the execution time. Also, the approach is compared with a re-

cently proposed device variation aware mathematical programming based approach. The algorithm is

then used to perform single metric optimization, and the results are compared with the multi-metric op-

timization values to evaluate the relative impact of a single metric optimization on the sub-optimality

introduced in other metrics. Finally, the impact of incorporating interconnect variations in addition

to the gate size variations in the algorithm is analyzed. It is important to note that this method has

been transformed from a path based approach to an equivalentnode based approach according to the

technique proposed in [47]. This controls the size of the problem to further improve the runtime and
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feasibility for large circuits. The sub-optimality introduced due to the transformation is close to 2%

for circuits with 20 levels of logic.

3.5.1 Setup

The multi-metric optimization algorithm for gate sizing under process variations was rigorously

tested on the ITC’99 benchmark circuits. The setup consisted of three steps, as listed below.

• The RTL level VHDL net-lists of the benchmark circuits were extracted for generating gate

level Verilog files using theSynopsys Design Compilertool. These gate level Verilog files

and the TSMC 180nm Standard Cell libraries (LEF, TLF, DB Files etc.) were then used to

place and route the designs and generate the DEF files, cell delay information etc. using the

Cadence Design Encountertoolkit. The benchmark circuits were synthesized using TSMC

180nm libraries since the lower level libraries were not available to us.

• The parasitic resistance and capacitance information (SPEF file) was extracted from the routed

designs using the CadenceFire N’ Ice RC extractor. This information was utilized for extracting

the coupling capacitance from the routed circuits. A PERL script was written to extract the

coupling capacitance information of each net with its top three coupled nets from the SPEF file.

• The delay coefficients for available gate sizes (1x - 6x) and fan-outs of the standard cells in the

TSMC 180nm standard cell library were characterized using the HSPICE simulations. Also,

the variations in gate sizing parameters were assumed to be 25% of the nominal values, which

were appropriately translated to the coefficientsa, b andc in Equation 3.22. A conservative

estimate of 10% variance for the interconnect variations inthe best case delay constraints was

incorporated in the model. The best case delays were identified in a pre-processing step, through

the unconstrained linear programming optimization.

After the delays, coupling noise etc. were calculated for the benchmark circuits, the stochastic gate

sizing optimization problem was formulated. The algorithmfor formulating the stochastic linear pro-

gramming model was programmed in C language. Next, the stochastic problem was converted into

a deterministic linear programming equivalent model through the expected utility maximization ap-

proach. The linear program was then converted to the standard AMPL format, which was solved using
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the robust KNITRO [96] optimization solver. KNITRO uses interior point and active set methods for

optimization and is capable of utilizing multiple processors. This solver is specifically designed to

solve problems with large dimensionality. A detailed system flow is shown in Figure 3.3.

Figure 3.3 Simulation setup for the risk averse gate sizing optimization problem. The Synopsys and
Cadence tools are used to generate DEF, CAP, Verilog and SPEFfiles for each benchmark circuit.
These files, and the delay coefficients (a,b,c)determined by the extensive SPICE siimulations are
utilized in formulating the unconstrained linear programming problem, which is solved to evaluate the
best delays for each benchmark. The multi-metric stochastic optimization problem is then formulated
and converted to the equivalent risk averse deterministic problem. These linear programming problems
are then solved using the KNITRO optimization solver.
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3.5.2 Sensitivity of Utility Assurance Constant

The expected utility constrained optimization process involves identification of appropriate value

for the parameterω, which determines the utility of satisfying each constraint in the optimization

problem. In the domain of circuit optimization, each constraint is critical, and hence the satisfaction

of the constraints is central to the optimization process. Thus, the greatest bearable shortfall is kept as

zero. The expected utility assurance constantω evaluates the utility of each constraint in the model.

Intuitively, a high value ofω would ensure that each constraint in the problem is critical, and thus

needs to be satisfied. However, such a high value ofω may result in the under-achievement of the

optimization goals, whereas a low value would result in unreliability of the optimization process and

consequently the yield. To evaluate the consistency of thisintuition, and to identify the optimum range

of values for the utility assurance constant, experiments were performed on the benchmark circuits to

determine the average change in timing yield and the metric optimization values.

The timing yield of a circuit determines the probability that the circuit satisfies timing constraints.

In this model, the best timing specification (tspec) is identified during the unconstrained delay optimiza-

tion, and is used as a constraint during the multi-metric optimization. In the risk averse mathematical

programming formulation with delay constraints corresponding to each node, a high timing yield is

obtained since each timing constraint is satisfied. However, a timing value of the critical gates closer

to thetspecvalue is atoccam’s razor, with a high probability of failure due to process variations effects.

The timing yield of the circuit is higher if the difference between the maximum delay of the circuit

after optimization and the timing specification (tspec) is large. Thus we evaluate the improvement in

the timing yield of the benchmark circuits for various values of ω as(tspec− tmax) ∗100/tmax, where

tmax is the maximum delay of the circuit after the multi-metric optimization is performed. The graph

shown in figure 3.4 displays the timing yield improvement values for the benchmark circuits. The

results endorse the intuition that as theω value decreases, the timing yield of the circuit decreases,

since the satisfaction of each constraint does not have a high utility value, and thus may not satisfy,

which is the case for some designs (b11, b12, and b20) at low utility values.

The effect ofω on the objective function optimization follows a counter trend. As shown in the

Figure 3.5, the objective function optimization values fordifferent utility assurance constants (ω) as

compared to the values corresponding toω = 0.99 consistently improve for each benchmark circuit.
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Figure 3.4 Improvement in the timing yield of the circuits for different values ofω. The timing yield
improvement is given as the percentage increase in the difference betweentspec and the maximum
delay (tmax) of the circuit after the multi-metric optimization is performed.

This also follows the intuition, since the utility of each delay constraint for a lower value ofω is less,

there is greater margin for optimization at the cost of dissatisfaction of the constraint. An important

step in this risk averse optimization process is to identifythe optimumω values based upon the opti-

mization requirements. A good option in the general circuitoptimization domain is to use aω value

that provides at-least 98-99% timing yield, as well as identifies good solution points. In this work, we

have performed most of the analysis with the values ofω = 0.95, 0.92, and 0.90.

3.5.3 Risk Averse Optimization Results

To evaluate the optimization values for dynamic power, leakage power, and crosstalk noise in an

equally weighted multi-metric optimization setting of this risk averse gate sizing (RAGS) methodol-

ogy, a comparative analysis with an existing multi-metric fuzzy mathematical programming method-

ology (FMP) [97, 98] has been performed. It is important to note that since the fuzzy mathematical

programming method only incorporates the effect of processvariations due to gate sizes (constants

ai , bi , andci), the risk averse gate sizing method was also implemented with only device variations

for a fair comparison. The fuzzy mathematical programming approach is a three step process that
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Figure 3.5 Percentage improvement in the optimization of the objective function for various values of
ω. The objective function improvements are compared with thevalues obtained forω = 0.99.

first calculates the worst case and nominal case gate size values, with the optimal delays incorporated

as constraints in a similar fashion as this approach. These values are then used to formulate a fuzzy

non-linear program that is solved for optimization. The results for two values of utility assurance

constantω = 0.90 andω = 0.95 are shown in the Table 3.1. The results indicate that the optimiza-

tion values obtained using the risk averse gate sizing method is comparable to the fuzzy mathematical

programming results. On average, the improvement in metricoptimization values for each metric is

approximately equal to the FMP counter-parts forω = 0.95. The RAGS performed slightly better

than FMP in terms of metrics optimizations forω = 0.90. However, an important aspect of the risk

averse gate sizing approach is the execution time of the algorithm. As shown in last three columns of

Table 3.1, the algorithm execution time of our methodology is significantly less as compared to the

FMP method. The RAGS is 5.85 times faster than the FMP method for ω = 0.90 and more than 6.4

times faster forω = 0.95. This is attributed to the fact that the RAGS method is a single step linear

programming method as compared to FMP method which requiresthree steps, and the last step is a

non-linear program. This is significantly important for larger circuits like b17 which have more than

21000 gates.
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This algorithm can be utilized to perform single metric optimization of the metrics depending upon

the design requirements. The metric to be optimized can be prioritized by assigning a high weight vec-

tor to it. For example, if the designer intends to optimize only leakage power, then the weight vector

corresponding toκ is assigned as 1 where as the other metricsξ andν in the objective function are

assigned as 0 and 0 respectively. However, during such optimization the improvement in the optimiza-

tion values of the corresponding metric comes at the cost of introducing sub-optimality in the values

of other metrics. We have compared the results of single metric optimizations for dynamic power,

leakage power and crosstalk noise, with the equally weighted simultaneous multi-metric optimization

of all three metrics. The results of the average change in theoptimization values for the metrics as

compared to multi-metric optimization in all three cases isshown in Table 3.2.

The dynamic power dissipation for single metric optimization is lower than the multi-metric op-

timization (as shown in column 2 of Table 3.2). However, it isinteresting to note that on average,

dynamic power dissipation is reduced at the cost of leakage power and not crosstalk noise. This trend

occurs due to the fact that during the dynamic power minimization, fewer gates are resized from the

sub-optimal sizes (after delay optimization) as compared to leakage power optimization. This results

in a decrease in dynamic power, but the leakage power is largely unaffected. When only leakage power

is optimized, the optimization introduces sub-optimalityprimarily in crosstalk noise metric. This is

intuitive, since the leakage power is directly proportional to the gate sizes, where-as the crosstalk

noise has an inverse relationship with the gate sizes. When the single metric optimization for crosstalk

noise is performed, the gate sizing problem translates intoa maximization problem. The reduction

in crosstalk noise as compared to the equally weighted multi-metric optimization is notable (almost

47%). This is due to the fact that the maximization problem satisfies the delay constraints much easily

as compared to the minimization problem. Increasing the gate sizes reduces the crosstalk noise, as

well as the gate delays. However, this increases the power dissipation of the design by 30%.

3.5.4 Optimization Considering Device and Interconnect Variations

In this set of experiments, both device level (gate size) variations as well as interconnect varia-

tions are incorporated in the model, and the impact of interconnect variations on the optimization of

objective function and the timing yield is analyzed. The results are compared to the scenario where
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multi-metric optimization is performed considering only gate size variations. The overall variations

due to interconnects are assumed to be 10% of the nominal casevalues, and are incorporated in the

delay constraints by adding a variance of 10% to the optimal delay values (tspec). The utility assurance

constantω is kept as 0.92. As shown in Figure 3.6, the risk averse gate sizing methodology ensures

that the timing yield of the circuit is not sacrificed, even though the optimization results are affected.

It is interesting to note that the in the presence of interconnect variations, the timing yield for most

cases actually improves, since the methodology is risk averse, and intends to satisfy the constraints

with high utility. Due to this, the optimization is adversely affected.

Figure 3.6 Impact of interconnect variations and gate size variations on the optimization of the met-
rics. In these experiments, the interconnect variations (of 10% variation from the mean value) are
incorporate in addition to the gate size variations. The percentage change in the yield improvement
for the two cases (gate size variations and gate size and interconnect variations respectively), and the
corresponding percentage change in the objective functionachievement for the latter case (gate size
and interconnect variations) as compared to the former (only gate size variations) are plotted in the
graph. The value for expected utility assurance is kept atω = 0.92.
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3.6 Discussion

In this work, a new algorithm for simultaneous multi-metricoptimization of delay, dynamic power,

leakage power and crosstalk noise in presence of process variations and scarce information has been

developed. The algorithm is independent of the underlying variation distribution, and can handle the

impact of variations at several levels including variations due to gate sizes and due to interconnects.

This expected utility maximization based methodology models the problem in a mean-variance based

deterministic linear programming model, which optimizes the objectives while ensuring high levels

of expected utility for constraints satisfaction. The experiments conducted on the ITC’99 benchmarks

suggest that the algorithm is multi-fold faster than the existing mathematical programming algorithms

available in the literature, and ensures comparable optimization results. Good optimization results and

timing yields are obtained when the utility assurance constantω is kept at the levels between 0.95 and

0.90. A comparative study between the single metric and the multi-metric optimization reveals that the

improvements in a single metric are largely achieved by incorporating sub-optimality in other metrics.

This method is capable of incorporating more optimization metrics like security and reliability etc.,

if the metric can be expressed as a function of gate sizes. In general, the methodology developed in

this work is a fast, accurate, and efficient tool for nano-level post-layout gate sizing optimization for

complex circuits, where the complete variation distribution information is unavailable.
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Table 3.1 Comparison between equally weighted multi-metric optimization of leakage power, dynamic power and crosstalk noise for risk aware gate
sizing (RAGS) and fuzzy mathematical programming (FMP).

Comparison for Expected Utility Assurance Constantω = 0.90

ITC’99 Number Optimal †Performance of RAGS as Compared to FMP Exec. Time(ET) (secs) Speed-up
Benchmark of gates Delay (ns) Dynamic Power Leakage Power Crosstalk Noise RAGS FMP of RAGS

b11 385 0.71 15.65% 18.75% -5.91% 0.53 2.35 4.43x
b12 834 0.36 5.86% 7.52% 9.44% 9.63 38.65 4.01x
b13 249 0.26 -3.95% -6.05% -2.69% 0.143 0.848 5.93x
b14 4232 2.5 -5.42% -5.59% 9.31% 23 177 7.7x
b15 4585 3.43 -1.58% -1.26% 5.98% 54 213 3.94x
b20 8900 3.59 8.89% 9.75% -4.58% 97 713 7.35x
b22 12128 2.63 3.69% 4.08% 1.48% 145 978 6.74x
b17 21191 2.68 3.89% 1.79% -3.99% 349 2338 6.7x

Percentage Change 3.38% 3.62% 1.13% 5.85x

Comparison for Expected Utility Assurance Constantω = 0.95

b11 385 0.71 13.40% 16.28% -7.49% 0.51 2.35 4.6x
b12 834 0.36 4.03% 5.33% 14.56% 8.38 38.65 4.61x
b13 249 0.26 -4.82% -7.59% 2.17% 0.131 0.848 6.47x
b14 4232 2.5 4.66% 4.95% -9.20% 19 177 9.31x
b15 4585 3.43 -6.78% -6.46% 13.21% 49 213 4.34x
b20 8900 3.59 -9.12% -9.36% 0.82% 88 713 8.1x
b22 12128 2.63 1.50% 1.75% -4.66% 141 978 6.93x
b17 21191 2.68 2.53% 1.21% -2.34% 330 2338 7.08x

Percentage Change 0.68% 0.77% 0.88% 6.43x
†: The Percentage Change in the optimization of each metric is computed using the formula(ETFMP−ETRAGS)∗100/ETRAGS
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Table 3.2 Comparison between equally weighted multi-metric optimization withω = 0.92 and single metric optimization for dynamic power, leakage
power, and crosstalk noise metrics.

ITC’99 †Dynamic Power Optimization ‡Leakage Power Optimization∓ Crosstalk Noise Optimization
Benchmark ∗DP ∗∗LP Noise DP LP Noise DP LP Noise

b11 33.05% -7.21% -9.57% -5.90% 36.94% -22.37% -11.73% -13.09% 29.49%
b12 35.87% -9.03% -20.79% -8.29% 37.36% -33.76% -11.20% -12.09% 28.28%
b13 1.18% -15.54% 3.01% -13.09% 1.83% 12.29% -18.51% -18.99% 77.61%
b14 17.90% -3.54% 1.98% -2.87% 19.25% -26.84% -7.54% -7.77% 16.57%
b15 40.47% -8.67% -2.82% -7.97% 41.20% -21.88% -21.37% -21.30% 42.91%
b20 9.15% -14.17% 13.76% -13.15% 10.07% -29.70% -18.03% -18.75% 76.01%
b22 18.07% -11.49% 6.45% -10.83% 19.33% -19.25% -13.24% -13.84% 57.59%

Average 22.24% -9.95% -1.12% -8.87% 23.71% -20.21% -14.52% -15.12% 46.92%
†: Percentage Change in metric values when single metric optimization for Dynamic Power is performed
‡: Percentage Change in metric values when single metric optimization for Leakage Power is performed
∓: Percentage Change in metric values when single metric optimization for Crosstalk Noise is performed
∗: Dynamic Power ∗∗: Leakage Power
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CHAPTER 4

INTEGRATED FRAMEWORK FOR CIRCUIT OPTIMIZATION

In the nanometer regime, the transition of the process technology from one generation to the next

is contributing toward the identification of new metrics that can significantly affect the performance

and reliability of the designs. Thus, circuit optimizationtechniques developed to address the current

generation VLSI optimization issues may not be applicable to the future generation optimization re-

quirements. Also, a wide spectrum of devices incorporate VLSI circuits as an integral part of the

design. The design requirements of these devices vary widely. For example, mobile devices primar-

ily require low power dissipating design, while mission critical devices must ensure that the design

is reliable. Thus, there is a need for new horizontally and vertically integrated circuit optimization

solutions that are completely reconfigurable in terms of themetrics to be optimized, the optimization

methodology to be utilized, and the relative priorities with which the metrics are optimized. Thus, in

this chapter, a framework to optimize multiple performancemetrics in a unified manner is developed.

In this variation aware optimization model, a relationshipbetween the optimization metrics (like dy-

namic power, leakage power, and crosstalk noise) as a function of gate sizes is incorporated in the

objective function. The delay values obtained from unconstrained delay optimization, and noise mar-

gins obtained from the coupling capacitance information form the constraints form the optimization

problem, which is then solved for simultaneous optimization of multiple metrics. The framework is

independent of the optimization methodology, and can be implemented using any mathematical pro-

gramming approach. It is completely reconfigurable and generalized such that metrics can be selected,

removed, or prioritized for relative importance dependingupon the design requirements. This frame-

work is implemented, and tested on ITC’99 benchmarks for different combinations of multi-metric

and single metric optimizations of delay, dynamic power, leakage power, and crosstalk noise. The

results indicate that the approach identifies good solutionpoints, and is an efficient mechanism for

post-layout optimization via gate sizing.
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4.1 Need for Integrated Framework

In the nano-meter regime, the increase in density and complexity of the VLSI circuits has affected

the circuit optimization process in several ways. First, the inter-relationships between the metrics like

delay, power, and crosstalk noise have become more intricate in such a manner that the optimization

of one metric may worsen the optimality of other metrics. Thus, the optimization of a single metric

may no longer be adequate. Second, due to aggressive scaling, the wiring density and consequently

the aspect ratios in metal lines have increased, there-by magnifying the impact of coupling capacitance

between the nets. The crosstalk noise induced between the coupled nets could cause functional failures

in the circuits. As a simple example, if a gate sizing technique is aimed at only power minimization

of a given circuit, based on timing constraints, the resulting gate size configuration could potentially

have a high interconnect crosstalk noise.

According to the technology trends [99], these effects and uncertainties are expected to worsen in

future, and optimization methodologies which result in a performance shift from one objective to an-

other will not be acceptable. From the VLSI circuit optimization perspective, an important challenge

is to identify vertically as well as horizontally integrated solution methodologies [14]. This necessi-

tates the examination of new approaches that can simultaneously optimize multiple design parameters

for feasible solutions to circuit design problems.

Another important aspect in nano-level VLSI design and the optimization process is to address the

effect of process variations, which introduce uncertaintyin the geometries of devices like gate sizes

(gate length, oxide thickness etc.) of the fabricated circuits. As shown in Figure 2.5, at sub-100nm

levels, the intra-die parametric and systematic variations are comparable to the random variations [1].

The effects of layout schematics as well as parametric variations increase significantly due to the

shrinking geometries. The uncertainty due to these manufacturing variations impacts the performance

characteristics and the reliability of the circuits. An optimization model that does not incorporate the

impact of process variations could result in inaccurate analysis.

In this work, we present a new variation aware multi-metric gate sizing framework that can be used

to perform optimization of several metrics like delay, leakage power, dynamic power, and crosstalk

noise etc. This approach is completely reconfigurable and generalized in terms of its capability to

incorporate new metrics and selectively prioritize the metrics depending upon the design requirements,
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with minimal changes in the model. More importantly, any mathematical programming approach can

be utilized within this framework, to solve the optimization problem. An important aspect of this

approach is the identification of the inter-relationships between dynamic power, leakage power, and

crosstalk noise in terms of gate sizes, and modeling them in aunified framework.

In this framework, since delay is the primary objective in any circuit optimization process, it is

optimized with highest priority as a first step in the process. The delay values obtained from uncon-

strained delay optimization are then used as constraints during the simultaneous optimization of other

metrics: dynamic power, leakage power and crosstalk noise.The process variation effects due to gate

sizes (channel length, oxide thickness) are incorporated in the model, and a grid based model is used

to address the spatial correlation effects [62].

The state of the art research in VLSI design optimization that consider the impacts of process

variations has been discussed in details in the Section 2.4 of Chapter 3. The methods implemented for

optimizing various metrics has been studied and compared. Also, the different mathematical program-

ming techniques available in the literature, their properties and limitations are reviewed in that section.

One of these, or any other mathematical programming methodology may be used as the optimization

tool in this framework, without any apparent modification inthe modeling. The readers might want to

visit Sections 2.4 and 3.3 again to follow the material presented in the rest of this chapter.

The rest of the chapter is organized as follows. In Section 4.2, single metric mathematical pro-

gramming optimization models for leakage power, dynamic power, and crosstalk noise are derived

on the basis of the parametric models derived in the Section 3.3 of Chapter 3. The relationship be-

tween the design parameters in terms of gate sizes, and the steps involved in modeling the problem in

a multi-metric optimization framework are presented in section 4.3. Also, a mathematical program-

ming approach that is utilized for optimization in this workis briefly discussed. In Section 4.4, the

simulation setup, experimental results for various optimization scenarios, and analysis are presented,

followed by a summary and discussion in Section 4.5.

4.2 Single Metric Optimization Models

An important step in modeling any problem in a mathematical programming framework is to

identify the relationships between the design parameters.A model that relates the parameters in a
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simple yet accurate fashion improves the optimization process both in terms of the efficiency and

the applicability of the model. In this section, we present the general mathematical programming

formulations for optimization of each metric, delay, power, and crosstalk noise.

4.2.1 Unconstrained Delay Optimization

Delay is an important optimization metric in any circuit optimization problem. Since a delay

optimized circuit has higher timing yield, the delay is considered as the most critical metric to be

optimized in any generalized framework. In the presence of process variations at the nanometer level,

delay uncertainty can be reduced by performing unconstrained delay optimization. The mathematical

programming model for unconstrained delay optimization isgiven by equation (4.1). The noise margin

constraints that control the maximum noise a net can tolerate has been derived in Equation (3.28). The

design constraints in terms of the node delays in the paths form the constraints for the problem.

min tspec (4.1)

s.t ati(p)+di ≤ ati+1(p)∀i ∈ n;∀p∈ P

Ni ≤Ui∀i ∈ n

di = ∑
i∈p

(ai −bisi +ci ∑
j∈ f oi

sj)

l i ≤ si ≤ ui∀i ∈ n

Similar to the Equation (3.30), theati(p) is the arrival time at the gatei in pathp, di is the internal gate

delay ofi, andati+1(p) is the arrival time at the next gatei +1 in the pathp. Ui is the upper bound on

the noise margin, andNi is the noise margin of the current net. The valuesbi , andci are the uncertain

parameter coefficient values, andP is the set of all the paths in the circuit. The linear delay model is

adapted from [95] and has been described in Equation (3.22).

4.2.2 Power Optimization Under Delay Constraints

The power models proposed by Gao and Hayes [51] have been adapted to identify the leakage

power and the dynamic power as a function of gate sizes in Equations (3.26) and (3.25) respectively.
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These equations can be used to formulate the mathematical programming model for power optimiza-

tion under delay constraints.

From (3.26) and (3.25), it is identified that the leakage power of a gate is directly proportional to

its size, and the dynamic power is proportional to the sum of the sizes of its fan-out gates. Hence,

using the linear delay model, the problem of leakage and dynamic power optimization under delay

constraints can be given by (4.2).

min
n

∑
i=1

(θ∗si + φ∗si) (4.2)

s.t. di ≤ di(max)∀i ∈ n

l i ≤ si ≤ ui∀i ∈ n

where,θ corresponds to the normalized impact (weight) of gate size on the leakage power, andφ

corresponds to the normalized impact of the gate size on the fan-in gates of the design, and effectively

the dynamic power impact. Here,di is the delay of gatei, di(max) is the upper bound on the delay

of gatei, according to the timing specifications in a node based model, n is total number of gates in

the design, andl i andui are the minimum and maximum available gate sizes in the standard library,

respectively.

4.2.3 Crosstalk Noise Optimization Under Delay Constraints

The relationship between the sizes of the driving gates of the coupled nets, derived in Equation

(3.27) can be incorporated in formulating a linear programming formulation for the crosstalk noise

optimization under delay constraints. Here, for every gatesi , the noise on its fan-out net is a function

of the total cross-coupling capacitance on the net. So, given a weight vectorξ as a function of the

cross-coupling capacitance on the net, such thatξi∀i ∈ n, andξi ≥ 0, an equivalent node based linear

programming model for crosstalk noise optimization by gatesizing can be formulated for maximizing

the weighted sum of the gate sizes, under delay and noise margin constraints. The linear programming
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formulation for crosstalk noise optimization can be formally stated as (4.3).

max
n

∑
i=1

ξisi (4.3)

s.t. di ≤ dmax∀i ∈ n

Ni ≤Ui∀i ∈ n

l i ≤ si ≤ ui∀i ∈ n

The problem is formulated as a maximization problem to minimize the noise on each gate by maxi-

mizing its size, weighted by the impact of each gate on the crosstalk of each output net. Since, the

impact of sizing is symmetric on the coupled nets, the optimal sizes of the gates are obtained that

would reduce the coupling effect.

4.3 Integrated Framework for Variation Aware Gate Sizing

In this section, a detailed description of the unified gate sizing approach is presented. First, we

discuss the various aspects of the objective function modeling, in which the relationships between the

three metrics, dynamic power, leakage power, and crosstalknoise are captured as a function of gate

sizes. The objective function should be reconfigurable in the sense that any metric can be inserted

or deleted, or weighted as required. Next, the integrated framework is discussed, followed by the

mathematical programming formulation for variation awareoptimization. Finally, we will briefly

discuss the process of converting a path based approach to a node based approach, which improves the

runtime of the algorithm.

4.3.1 Objective Function Modeling

In the context of gate sizing, the impact of the three design parameters, leakage power, dynamic

power, and crosstalk noise as a function of gate sizes is incorporated in the objective function that is

to be optimized. Specifically, the inter-relationship of the three metrics is as follows.

• As shown in Equation (3.26), the leakage power of a gate is directly proportional to the size of

the gate, and hence has a direct impact. So, increasing the size of the gate would increase the
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leakage power dissipation of the circuit. The components like the input transition probabilities,

leakage current and the input patterns also impact the leakage power dissipation of the circuit.

• The relationship between the dynamic power dissipation andthe gate sizes is shown in Equation

(3.25). The dynamic power dissipation of a gate is primarilyaffected by the total size of its fan-

out gates in the circuit. Thus, for a gatei, the total number of gates its fan-in nets are connected

to, determine the impact of the gatei on the dynamic power of the gates that are in its fan-in.

Hence, the weight for sizing this gatei is proportional to the number of gates that it is connected

to in their fan-out.

• As discussed in the previous section, the crosstalk noise ona net primarily depends upon the

size of its driver gate and the sizes of the driver gates of thecoupled nets. Hence, crosstalk noise

has an inverse relationship with the gate size. If the driving gate of a net is sized up, the signal

strength on the net increases and hence the crosstalk noise on the net reduces. However, the

up-sizing of the gate has an adverse effect on the coupled nets. By up-sizing the driver gates of

the coupled nets, the noise on those nets can be reduced.

These performance metrics can be modeled in a single objective function, which is optimized

in the presence of delay constraints. Hence, three dimensionless normalized coefficientsθ, φ, and

ξ, referring to the impact of gate sizing on the leakage power,dynamic power, and crosstalk noise

respectively are incorporated in the objective function. The coefficientθ is directly proportional to the

size of the gate, and coefficientφ is a function of the normalized impact of the gate size on the gates

that are in its fan-in. So if a gatei is in the fan-out of a large number of gates, the impact of up-sizing

i will be higher for the circuit. However,ξ is inversely proportional to the size of the gate, and its

normalized value is a function of the maximum coupling capacitance of its corresponding net with the

aggressor nets. The higher the cross-coupling capacitancevalue higher is the coefficient value.

To incorporate the capability to select among the objectivefunctions, three constantsα, β, andγ

are multiplied to the coefficientsθ, φ, andξ, controlling the impact of these coefficients on the final

objective achievement. For example, if all the three objectives leakage power, dynamic power, and

crosstalk noise are equally weighted, thenα = β = γ = 0.33.
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The objective function is given by the following equation:

min
n

∑
i=1

(α∗θ∗si + β∗φ∗si− γ∗ξ∗si) (4.4)

where,si is the size of the gatei, andn is the total number of gates in the design.

4.3.2 Integrated Framework

After the objective function is identified as shown in (4.4),an integrated framework for the multi-

metric optimization is formulated. Figure 4.1 shows the toplevel flowchart for the framework. During

the first step, a linear program is formulated, as shown in (4.1), with the delay (tspec) as the objective

function, which is minimized to identify the best possible circuit delay. The nominal (best) case delay

coefficients are used during this optimization. This deterministic optimization solution generates the

delay specifications for all the paths in the design, which are used as constraints in the next steps.

In the next step, any mathematical programming methodologycan be implemented to perform the

stochastic optimization by incorporating the delay constraints (3.22) and the noise margin constraints

(3.28). The weighted coefficientsθ, φ, andξ are incorporated in the objective function, which allow

to incorporate the priorities for optimizing the metrics according to the designer requirements. The

mathematical programming formulation is given in (4.5).

min
n

∑
i=1

(αθ+ βφ− γξ)si (4.5)

s.t dp≤ tspec∀p∈ P

Ni ≤Ui∀i ∈ n

l i ≤ si ≤ ui∀i ∈ n

di = ai − b̄isi + c̄i ∑
j∈ f o(i)

si

After the problem is formulated in the mathematical programming framework, it can be converted into

a standard optimization language format (AMPL etc.), and can solved using any linear programming

solver.
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Figure 4.1 Gate sizing framework for multi-metric circuit optimization. Since delay is the primary
objective in VLSI optimization, it is optimized separatelyas the first step in the process. Next, the other
optimization metrics are simultaneously optimized by incorporating them in the objective function.
The objectives can be relatively prioritized.

4.3.3 Mathematical Programming Methodology

Any stochastic mathematical programming technique can be incorporated in the framework to

solve the multi-metric optimization problem, provided that the probability distributions for the inter-

die and intra-die variations are available. However, the evaluation and optimization of the distributions

is computationally intensive. This is attributed to the fact that exhaustive Monte-Carlo simulations are

required to generate the probability distributions for allthe parameter variations. In several cases, ap-

propriate empirical information is not available, thus leading to inaccurate approximation. However,
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it is possible for experts to predict the pessimistic corners, and optimistic corners for the different un-

certain parameters. Interval mathematics based techniques such as fuzzy mathematical programming

technique can use such top level information to make better decisions in such situations. Also, Buck-

ley [100] has shown that fuzzy programming based optimization guarantees solutions that are better

or at least as good as their stochastic counterparts, since they identify the supremum of all the feasible

solutions and not the averages. Thus, we choose the fuzzy mathematical programming technique as

the solution methodology to illustrate our framework.

Here, we will briefly present the methodology and the formulations. Algorithm Algorithm 4.1

shows the steps involved in the process. In the fuzzy mathematical programming method [48], the

parametric variations in the delay equation are modeled as fuzzy number triplets of the form (bi , bi−gi ,

bi +gi) and (ci , ci−hi , ci +hi). Here,gi andhi correspond to maximum variations for the coefficients

bi andci respectively. The coefficientbi approximates the variation in effective channel length (Le f f),

whereasci approximates the variations in oxide thickness (tox).

Algorithm 4.1 Multi-metric gate sizing algorithm
Require: Parasitic information from SPEF File, Design variables from DEF, CAP, and structural

Verilog files, characterized values for nominal and worst case delay coefficientsa, b, andc.
Ensure: Optimal Gate sizes

1: Evaluate the nominal case delay(tspec) by solving a path constrained linear programming formula-
tion, incorporating the nominal case delay coefficients in the linear delay model given in Equation
(3.22)

2: Formulate and solve the nominal case multi-metric gate sizing problem through a deterministic LP
formulation with noise and power objectives, and nominal case delay and noise margin constraints.
Also, incorporate the spatial correlations in the modelingof the problem

3: Store the nominal case results for noise (Nnc) and gate sizes (Snc)
4: Formulate and solve the worst case multi-metric gate sizingproblem through a deterministic LP

formulation with noise and power objectives, and worst casedelay and noise margin constraints.
Also, incorporate the spatial correlations in the modelingof the problem

5: Store the worst case results for noise (Nwc) and gate sizes (Swc)
6: Using gate size valuesSnc andSwc, and the noise resultsNnc andNwc, formulate a crisp fuzzy

non-linear program to maximize the variation parameterλ, under delay and noise constraints

In the worst case optimization scenario, the maximum possible variations are assumed and a pes-

simistic approximation is performed, and the delay equation is given by (4.6).

di = ai− (bi −gi)si +(ci +hi) ∑
j∈ f o(i)

si (4.6)
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In the nominal case optimization, the delay equation is given as follows:

di = ai −bisi +ci ∑
j∈ f o(i)

si (4.7)

The nominal case (step 2) and the worst case (step 4) gate sizing formulations for fuzzy programming

are given by (4.8) and (4.9) respectively. The spatial correlations are incorporated in the modeling

by multiplying a constant multiplier to weight the variability impact of a fan-out gate on the delay

of a particular gate. The farther the fan-out gate is, the lower is the weight and hence the impact of

variations on that gate.

min
n

∑
i=1

(αθ+ βφ− γξ)si (4.8)

s.t dp≤ tspec∀p∈ P

Ni ≤Ui∀i ∈ n

l i ≤ si ≤ ui∀i ∈ n

di = ai −bisi +ci ∑
j∈ f o(i)

si

min
n

∑
i=1

(αθ+ βφ− γξ)si (4.9)

s.t dp≤ tspec∀p∈ P

Ni ≤Ui∀i ∈ n

l i ≤ si ≤ ui∀i ∈ n

di = ai− (bi −gi)si +(ci +hi) ∑
j∈ f o(i)

si

After the deterministic nominal (Snc, Nnc) and worst case (Swc, Nwc) problems are solved for the delay,

noise and power values using a mathematical programming solver, the noise and gate size values are

used for formulating a crisp non-linear programming model.Using a new variation parameterλ, the

fuzzy optimization problem is formulated using the symmetric relaxation method [101]. The gate
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sizing problem in the presence of process variations is given by (4.10).

max λ (4.10)

λ(Swc−Snc)−GS+Swc≤ 0,

λ(Nwc−Nnc)−GS+Nwc≤ 0,

s.t. Dp≤ tspec ∀p∈ P

and Dp = ∑
i∈p

(ai − (bi−gi ∗λ)si

+(ci +hi ∗λ) ∑
j∈ f o(i)

sj)

where, the parameterλ is bounded by 0 and 1. However, for the gate sizing problem, a smaller bounds

of range between 0.5 and 0.75 can be given forλ. Such a smaller bound is sufficient due to the dual

requirement of high yield and low overhead for the gate sizing optimization in presence of variations,

and speeds up the procedure 2-3 times, without affecting thefinal solution. Physically,λ can be

considered as the variation resistance (robustness) property of the circuit, meaning the ability to meet

timing constraint even in the presence of variations. Hence, the LP tries to maximize this variation

resistance. The noise and sizing constraints ensure that the crosstalk noise and the power are between

the worst case and the nominal case values. The variation resistance tries to ensure that the optimal

solution values are closer to the nominal case values, and thus minimizes the power and crosstalk noise

of the circuit. It has been shown in the literature [102–104]that the fuzzy non-linear programming

solutions produce the most satisfying optimization results in the presence of uncertainty.

4.3.4 Paths to Nodes

An important issue in the aforementioned optimization problem is that it is intrinsically a path

based formulation. This issue can be addressed by converting a path based formulation to a node

based one, with each node corresponding to a gate [47]. If we consider two simple pathsa−→ c and

b−→ c, wherea andb are the nodes corresponding to primary inputs andc as primary output node,
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then considering a dummy sink nodessuch thatc−→ s, the node based formulation can be gives as:

min
3

∑
i=1

si (4.11)

s.t. da≤ tc

db≤ tc

tc +dc≤ tspec

where,tc is the arrival time atc anddis are given by the linear delay model. The sub optimality intro-

duced due to this transformation is close to 2% for circuits with 20 levels of logic. The sub-optimality

refers to the value of dynamic power obtained when compared to the path based formulation. However,

this transformation significantly improves the runtime andthe feasibility of optimizing large circuits.

4.4 Experimental Results

In this section, we present the experiments conducted to evaluate the performance of this multi-

metric optimization framework. The framework was rigorously tested for optimization in various set-

tings like equally weighted multi-metric optimization, single metric optimization, and adaptive multi-

metric optimization where the metrics are optimized with different priorities by assigning different

weight vectors to the metrics.

4.4.1 Simulation Setup

The multi-metric optimization algorithm for gate sizing under process variations was rigorously

tested on the ITC’99 benchmark designs. The simulation setup had three important steps. During the

first step, the RTL level VHDL net lists of the benchmark circuits were extracted for generating gate

level Verilog files using the Synopsys Design Compiler tool.These gate level Verilog files and the

TSMC 180nm Standard Cell libraries (LEF, TLF, DB Files etc.)are then used to place and route the

designs and generate the DEF files, cell delay information etc using the Cadence Design Encounter

toolbox. We synthesized the benchmark circuits using TSMC 180nm libraries.

In the second step, the parasitic resistance and capacitance information (SPEF file) was extracted

from the routed designs using the Cadence Fire N’ Ice RC extractor. This information is required for
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extracting the coupling noise of the routed designs. The SPEF file was then used to obtain the coupling

capacitance and resistance information of each net with itsaggressor nets using a PERL script that was

written to extract this coupling information for each net, with its top three aggressor nets. During the

third step, the delay coefficients for available sizes (1x - 6x) and fan-outs of the standard cells in

the TSMC 180nm standard cell library were characterized using the HSPICE simulations. Also, the

variations were assumed to be 25% of the nominal values [56],and were appropriately translated to

the coefficientsa, b andc. With all the information about the delays, coupling noise etc. available

for the benchmark designs, the nominal case and the worst case gate sizing optimization problems

were formulated. These problems were programmed in C language, which generated the optimization

models in the standard AMPL format. These extreme case problems were then solved using a Linear

programming solver called KNITRO. KNITRO is a robust non-linear programming solver for both

convex and non-convex optimization problems. It is specifically designed to solve problems with large

dimensionality. KNITRO uses interior point and active set methods for optimization, and is capable

of utilizing multiple processors. The solver is available as a part of the NEOS optimization [37] suite.

The optimal solutions of the worst case and the nominal case settings are then utilized to formulate a

crisp non-linear programming problem, and solved using KNITRO. A detailed flow of the simulation

setup is shown in Figure 4.2.

4.4.2 Optimal Noise Margins

Ideally, the noise margin is given as the difference betweenthe minimum sized victim and the

maximum sized aggressor gates. This corresponds to the maximum coupling impact on the victim net.

When the victim driver gate is sized at its minimum possible size, the signal strength on the victim net

is very low. Additionally, if the aggressor net’s driver gate is sized up to the largest possible size, the

aggressor net’s signal strength increases, thereby inducing a large cross-coupling capacitance, which

can affect the victim net’s signal integrity. Hence, a constraint to control the maximum tolerable noise

on a net is incorporated in the model.

The gate sizes considered in this simulation setup range from 0.25e−6 to 1.5e−6. Therefore, the

noise margin for a net can be given by (4.12).

N = (1.5e−6)− (0.25e−6) (1.25e−6) (4.12)
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Figure 4.2 Flowchart for simulation setup. 180nm standard cell libraries have been used to extract the
required files for the ITC’99 benchmark circuits.

However, these ideal noise margins are not tight, and could not capture the impact of coupling noise

effectively. Thus, experiments were performed to identifythe optimal noise margins, by evaluating

the impact of different noise margin values on the objectivefunctions. The experimental results are

shown in Figure 4.3. Here, if the noise margin is below 0.65e−6, the dynamic power is adversely

affected, even though leakage power and crosstalk noise areunaffected. Thus, after averaging the

effects of noise margin on the crosstalk, and the power, a tighter noise margin constraint of 0.65e−6

was identified. This tighter noise margin can efficiently minimize the effect of coupling noise, and
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generate better solution points. These noise margins are used as constraint in the (4.9) to control the

crosstalk noise between the nets during the gate sizing.

Figure 4.3 Effect of different noise tolerance values on theoptimality of the objectives. Tighter tol-
erance values for the noise constraint derived in (4.12) have been applied and their impact on the
leakage power, dynamic power and crosstalk noise has been plotted to obtain a tighter noise margin
for the optimization process.

4.4.3 Determination of Timing Specification

In the first step of the optimization process, the circuit delay is optimized, since it is the primary

optimization metric. A node constrained linear program is formulated using (4.1), and solved to

evaluate the best timing specifications for each gate in the design. The noise margin constraints ensure

that the maximum tolerable noise margins are maintained during the optimization process. However,

the delay optimization results in sub-optimal values for leakage power, dynamic power and crosstalk

noise. The optimal delay values identified during this step serve as the constraints for the node delays

during the next steps of multi-metric optimization. The optimal delay values (tspec) for the ITC’99

benchmark circuits are shown in the third column of Table 4.1.
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4.4.4 Leakage Power, Dynamic Power, and Crosstalk Noise Optimization

We evaluated the optimization results when leakage power, dynamic power, and crosstalk noise

are simultaneously optimized with equal priority (α = β = γ = 0.33). The technological constraints of

node delays with delay values and noise margin constraints,along with the bounding constraints cor-

responding to minimum and maximum available sizes of the gates are used to formulate the worst case

and the nominal case optimization problems. For each of these problems, the respective characterized

linear delay coefficientsa, b, andc andāi , b̄i , and ¯ci are incorporated in (4.9), which was solved using

the KNITRO solver. The deterministic nominal case (Snc, Nnc) and worst case (Swc, Nwc) power and

noise results are then utilized in formulating the fuzzy mathematical program as shown in (4.10). The

solution of the crisp non-linear problem obtained using theKNITRO solver gives the optimizations in

the leakage power, dynamic power and crosstalk noise for thecircuit.

The optimization improvements in dynamic power, leakage power, and crosstalk noise as com-

pared to the sub-optimal values obtained during the delay optimization are shown in Table 4.1. As

evident from the table, the multi-metric optimization results are significantly improved over the sub-

optimal values from unconstrained delay optimization. Theincorporation of spatial correlations during

the modeling of the problem further eliminate the pessimismby reducing the effect of variations in

circuit elements that are not in the same grid as the current element.

Table 4.1 Improvement in the optimization of metrics for multi-metric optimization with equal priority
(α = β = γ = 0.33), as compared to the values obtained during unconstrained delay optimization.

ITC’99 Number Unconstrained Delay † Improvement in Metrics Execution
Benchmark of gates tspec(ns) Leakage Power Dynamic Power Crosstalk Noise Time (secs)

b11 385 0.71 12.75% 19.8% 28.1% 2.35
b12 834 0.36 14.18% 20.5% 34.76% 38.65
b13 249 0.26 57.5% 66.2% 59.98% 0.848
b14 4232 2.5 38.0% 17.92% 125.25% 177
b15 4585 3.43 25.63% 42.0% 42.35% 213
b17 21191 2.68 46.38% 57.33% 62.87% 2338
b20 8900 3.59 18.95% 21.57% 72.79% 713
b22 12128 2.63 14.57% 58.69% 59.41% 978

Average Savings 28.49% 38.0% 60.7%
†: Percentage improvement over the unconstrained delay optimization

A notable aspect of this method is the runtime of the algorithm. As shown in column 7 of the

Table 4.1, the runtime for the algorithm is comparatively low for even 21000 gates designs. This is

attributed to the optimum modeling of the problem as a node based approach as compared to a path
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based approach. Also, selection of the optimization solverplays an important role in controlling the

runtime. KNITRO is a fast and accurate solver, available forboth linear optimization and non-linear

optimization problems.

Next, a comparative study between the pessimistic worst case analysis and the fuzzy analysis was

performed to study the effectiveness of the mathematical programming technique being implemented

as a solution methodology for our framework. As shown in Figure 4.4, fuzzy mathematical program-

ming identified the solution points that significantly improved over the worst case values, and the

values were closer to nominal case analysis. The improvements in the optimization are notable since

the average total power savings are more than 30%, and the crosstalk noise improvement is more that

40%.

Figure 4.4 Average improvement in the metrics values for simultaneous multi-metric optimization as
compared to the deterministic worst case pessimistic analysis. The metrics leakage power, dynamic
power and crosstalk noise are weighted asα = β = γ = 0.33 respectively.

4.4.5 Single Metric Optimization Results

This framework allows for selective optimization of the metrics, depending upon the design re-

quirements. The metric to be optimized can be prioritized byassigning a high weight vector to it. For
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example, if a designer intends to optimize only the leakage power, the coefficientsα, β, andγ will

be assigned the values as 1, 0, 0 respectively. However, whenonly leakage power is optimized, the

crosstalk noise may be affected adversely. The impact of single metric leakage power optimization

as compared to the equally weighted multi-metric optimization is shown in Figure 4.5. As shown,

when only leakage power is optimized, the optimization may result in sub-optimality introduced in

other metrics, like crosstalk noise in this case. This is intuitive, since the leakage power is directly

proportional to the gate sizes. However, since the crosstalk noise has an inverse relationship with the

gate sizes, the noise may increase as a result of optimization. Since dynamic power is affected by the

size of the fan-out gates, if the gates sized during the leakage power optimization are same as the ones

that affect the dynamic power, then dynamic power would alsoreduce. However, in the other scenario,

dynamic power would be adversely affected.

Figure 4.5 Effect of single metric leakage power optimization as compared to equally weighted multi-
metric optimization. For single metric optimization the metrics are weighted asα = 1,β = 0,γ = 0,
and for multi-metric optimization the metrics are weightedasα = 0.33,β = 0.33,γ = 0.33.

We also performed experiments for single metric optimization of the other two metrics, dynamic

power (with weightsα = 0,β = 1,γ = 0), and crosstalk noise (with weightsα = 0,β = 0,γ = 1). The

results for single metric dynamic power optimization as compared to equally weighted multi-metric
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optimization are shown in Table 4.2. The dynamic power dissipation for single metric optimization is

lower than the multi-metric optimization. However, an interesting observation in this scenario is that

on the average, dynamic power dissipation is reduced at the cost of leakage power and not crosstalk

noise. This trend occurs due to the fact that during the dynamic power minimization, fewer gates are

resized from the sub-optimal sizes (after delay optimization) as compared to leakage power optimiza-

tion. This results in a decrease in dynamic power, but the leakage power is largely unaffected.

When the single metric crosstalk noise minimization is performed, the gate sizing problem trans-

lates into a maximization problem. The results for crosstalk noise minimization as compared to the

equally weighted multi-metric optimization are also shownin Table 4.2. A notable improvement (al-

most 2x) in crosstalk noise as compared to the multi-metric optimization scenario is identified. This is

due to the fact that the maximization problem satisfies the delay constraints much easily as compared

to the minimization problem. Increasing the gate sizes reduces the crosstalk noise, as well as the gate

delays. However, this increases the power dissipation of the design by more than 40%.

4.4.6 Results for Priority Based Optimization

The framework can be utilized for adaptive multi-metric optimization in situations where the de-

sign requires the metrics to be optimized with different priorities. In such scenarios, the coefficients

α, β, andγ are assigned weights corresponding to the relative priorities. We performed the exper-

iments with two such scenarios. First, an optimization is performed with equal priorities assigned

to leakage power and dynamic power, while neglecting the impact of crosstalk noise. The weights

were assigned asα = 0.5,β = 0.5,γ = 0. The results for optimization were compared with the equally

weighted multi-metric optimization scenario to identify the percentage improvement in the two met-

rics leakage power and dynamic power. Since the weights wereincreased by approximately 17% for

each metric, we evaluated if the optimality of each metric follows the same trend. The results for the

percentage improvement in metrics for the benchmarks are shown in Figure 4.6. The average dynamic

power improvement was 11.1% and average leakage power improvement was 12.7%. Although, the

improvements were not of the same order, they were coherent with the expectations.

Finally, to compare the three scenarios discussed in this section, unconstrained delay optimization,

single metric optimization, and multi-metric optimization, we compared the leakage power values
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Table 4.2 Comparison of single metric dynamic power and crosstalk noise optimization with the
equally weighted multi-metric optimization values.

Dynamic Power Optimizationα = 0,β = 1,γ = 0

ITC’99 † Improvement in Metrics
Benchmark Dynamic Power Leakage Power Crosstalk Noise

b11 13.49% -15.11% -12.02%
b12 8.02% -11.73% 2.88%
b13 13.62% -34.76% -6.66%
b14 5.00% -10.26 0.70%
b15 20.57% -10.82 2.30%
b20 6.42% -14.75 8.83%
b22 14.32% -6.74 25.30%

Average 11.64% -14.88% 3.05%

Crosstalk Noise Optimizationα = 0,β = 0,γ = 1

ITC’99 † Improvement in Metrics
Benchmark Dynamic Power Leakage Power Crosstalk Noise

b11 -19.66% -21.34% 143.20%
b12 -20.69% -22.38% 197.71%
b13 -35.91% -38.40% 106.84%
b14 -15.81% -16.11% 97.23%
b15 -19.15% -18.88% 183.50%
b20 -19.15% -19.81% 146.88%
b22 -10.01% -10.19% 111.26%

Average -20.05% -21.02% 140.95%
†: Percentage improvement as compared to

equally weighted multi-metric optimization

obtained during the single metric leakage power optimization, and the multi-metric optimization with

leakage weighted asα = 0.3 with sub-optimal leakage power values obtained during unconstrained

delay optimization. The improvements in the metric are shown in Figure 4.7. The results indicate

that the single objective optimization identifies most optimal values for the metric, followed by the

multi-metric optimization, which is intuitive. However, such optimizations introduce sub-optimality

in other metrics like crosstalk noise and dynamic power.

4.5 Discussion

In this work, a new integrated framework for variation awaremulti-metric optimization has been

developed for optimization of several metrics like delay, leakage power, dynamic power, and crosstalk

noise. Any mathematical programming approach can be utilized to implement this framework. In this
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Figure 4.6 The improvement in leakage power and dynamic power when optimized with priorities
α = 0.5, β = 0.5, andγ = 0 as compared to the scenario whereα = 0.33,β = 0.33, andγ = 0.33.

Figure 4.7 Comparative study of leakage power optimizationin three different scenarios, uncon-
strained delay optimization, single metric leakage power optimization, and multi-metric optimization.
The coefficients corresponding to the metrics in multi-metric optimization are assigned asα = 0.3,
β = 0.45 andγ = 0.25.
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work, we identify the relationships between the delay, leakage power, dynamic power, and crosstalk

noise metrics as a function of gate sizes and model them in a unified manner. Additional metrics like

security, reliability etc. in terms of gate sizes can be incorporated in the optimization framework with-

out any modifications. The framework is completely reconfigurable in terms of design requirements

to selectively optimize one or more metrics by assigning appropriate weights to the metrics.

The experiments performed on the ITC’99 benchmark circuitsindicate that the equally weighted

multi-metric optimization achieves good results in terms of optimizing the values of all the metrics.

Also, the weights assigned to each metric in the model are approximately linearly correlated with

the average improvements in the optimization values, and hence can be used to prioritize the metrics.

Although, single metric optimization achieves maximum savings for the corresponding metric, such

an optimization introduces significant sub-optimality in the values of other metrics. Experiments and

comparative analysis of different optimization scenariosadvocate the efficacy of this framework as a

generalized post-layout multi-metric optimization tool.
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CHAPTER 5

A MICROECONOMIC APPROACH TO SPATIAL DATA CLUSTERING

In an optimization problem, as the size of a problem increases, the most efficient way of solving

it is to form multiple partitions on the basis of certain criteria, and to solve each partition separately.

However, clustering is an optimization problem, since clusters are required to be identified on the

basis of specific objectives. In general spatial pattern clustering domain, several techniques have been

developed in a wide variety of scientific disciplines such asbiology, pattern recognition, information

systems etc. While these traditional disciplines focus on developing algorithms to perform single

metric clustering, various engineering and multi-disciplinary applications in emergency management,

computer networks, VLSI, and robotics entail simultaneousexamination of multiple metrics for spatial

pattern clustering. In this work, we develop a novel multi-objective clustering approach that is based

on the concepts of microeconomic theory. The algorithm models a multi-step, normal form game

consisting of randomly initialized clusters as players that compete for the allocation of resources (data

objects). A Nash equilibrium based methodology evaluates asolution that is socially fair for all the

players. After each step in the game, the clusters are updated using any mathematical clustering

algorithms. Extensive simulations were performed on several real data sets as well as artificially

synthesized data sets to evaluate the efficacy of the algorithm. The experimental results indicate that

our algorithm yields significantly better results as compared to the traditional algorithms. Further,

the algorithm yields a high value for thefairness index, which indicates the quality of the solution in

terms of simultaneous clustering on the basis of multiple objectives. Also, the sensitivity of the various

design parameters on the performance of our algorithm is analyzed and reported.

5.1 Spatial Data Clustering

Formally, the clustering problem can be defined as an optimization problem [12, 90]: Given a set

of input patternsX = {x1, · · · ,x j , · · · ,xN}, a positive integerK, a distance measureδ, and a criterion
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functionJ(C,δ(., .)) onK-partitionC = {C1, · · · ,CK} of X andδ(., .), wherex j = (x j1,x j2, · · · ,x jd)T ∈

ℜd, and eachx ji is a feature in the feature space, partitionX into disjoint setsC1, · · · ,CK(K ≤N) such

that J(C,δ(., .)) is optimized (minimized or maximized). The different clustering criteriaJ, and the

distance functionsδ(., .) define the various clustering objectives, which may be conflicting in nature.

As an example, the objectives like spatial separation and connectedness follow an inverse relationship.

Similarly, the compactness of the cluster is inversely related to the equi-partitioning objective. Hence,

most of the existing clustering methodologies attempt to optimize just one of the objectives that are

identified to be the most appropriate in that context. This result in discrepancies between solutions

provided by different algorithms and could cause a clustering method to fail in the contexts where the

criterion is inappropriate.

The applications such as rescue robots deployment, ad-hoc networks, wireless and sensor net-

works, and multi-emergency resource management have necessitated the identification of new clus-

tering mechanisms that could simultaneously optimize multiple objectives, which may be competitive

in nature. As an example, let us consider a problem of establishment of an ad-hoc network of nodes

that communicate with each other over a wireless link. Although each node has identical transmission

and computing capabilities, due to power constraints, clusters are required to be created to reduce

the communication overhead. Each cluster should have a cluster head that is responsible for inter-

and intra-cluster communication. An optimal clustering mechanism needs to ensure that the nodes do

not drop out of the network. Hence, clustering should be performed on the basis of multiple criteria;

compactness for low power intra-cluster communication, and equi-partitioning for uniform power dis-

tribution. These objectives are competitive in nature and needs to be optimized simultaneously using

amulti-objective clustering technique.

In this research, we investigate a novel methodology that identifies optimal clusters in applications

with multiple conflicting objectives. This methodology consists of three components, an iterative

hill climbing based partitioning algorithm, a multi-step normal form game theoretic formulation, and

a Nash equilibrium based solution methodology. Specifically, in this clustering mechanism, initial

clusters are identified using a mathematical approach (KMeans or KMedoids) followed by a game for-

mulation with these clusters as players and resources. It then identifies a solution using the concepts of

Nash equilibrium. Since the objectives are convex in nature, as shown in [13] a Nash equilibrium solu-
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tion always exists, and tries to achieve global optima. Also, depending upon the problem formulation,

the complexity of the Nash equilibrium lies between P and NP [13].

A brief review the existing clustering methodologies, the various application domains of game

theory, and the applications of load-sharing are discussedin Section 2.5. The rest of the chapter is

structured as follows. In Section 5.2, we discuss the motivation for identifying the approach for multi-

objective clustering. The clustering methodology is presented in detail in Section 5.3. Experimental

results are presented in Section 5.4, followed by a discussion on the applications and the possible

future research in Section 5.5.

5.2 Why Game Theory for Clustering?

Traditionally, in data clustering, a single parameter is optimized while assuming the other pa-

rameters as constraints. However, the clustering requirements of multi-disciplinary applications have

resulted in the need for new multi-metric clustering methods. In contrast to the ensemble methods that

effectively integrate the results of multiple single objective clustering methods, the fundamental basis

of game theory allows for the formulation of problems as multiple inter-related cost metrics compet-

ing against one another for simultaneous optimization. In game theory, each player’s decision is based

upon the decisions of every other player in the game, and he can optimize his gain with respect to

their gains. This results in identification of global gains,and consequently an equilibrium state for

the system. As an example, in the process of clustering the data objects with an objective of maxi-

mizing partition compactness, often clusters are formed such that some partitions have few objects,

while others having many objects, resulting in a situation of partition-imbalance. However, a cluster-

ing performed with load-sharing or equi-partitioning as objective could result in formation of clusters

with large intra-cluster distances. Thus, such situationsare convex in nature, and can be successfully

modeled in a game framework. Also, as shown in [13], if the payoff function in a game is convex, a

Nash equilibrium solution always exists and tends to identify globally optimal solutions [105]. This

is a good motivation for modeling the system in a game theoretic framework for simultaneous multi-

objective clustering.

A unique property of game theory is social equity or social fairness [13], which ensures that each

player in the game is satisfied and the overall goals are reached. As an example, for clustering on
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the basis of three parameters, compactness, equi-partitioning, and connectedness, the other methods

identify solutions targeting the global objective as a function of these design parameters. However,

a game theoretic model ensures that each of these parametersis optimized with respect to the others.

For an elaborate discussion of game theory the readers can refer to [27,28].

5.3 Microeconomic Clustering Algorithm

In this section, a detailed description of the game theoretic algorithm is presented. Initially, one

of the mathematical clustering methods (KMeans, in this work) is briefly explained, followed by a

thorough discussion of the key components of the game theoretic model, and the model itself. An

alternative ensemble based post-mathematical partitioning game theoretic method is also presented.

The section concludes with the analysis of complexity of themodel, and the proof of progression of

algorithm.

Certain assumptions have been made during the modeling of the problem as a game theoretic

framework. Most of these assumptions are not restrictive interms of the applicability of the model,

and can be discarded with no or very little changes. In this model, the objectives being considered

are compactness and equi-partitioning, but the methodology is applicable to any type and number of

objectives, conditional upon the convexity of the problem.The notations and terminology used in the

rest of the chapter are given in Table 5.1.

5.3.1 Mathematical Partitioning

The initial set of clusters is identified using one of simplest partitioning method KMeans. This

algorithm partitions a data set of sizeN into K clusters on the basis of minimization of the total intra-

cluster variation (TICV). The steps involved in the iterative KMeans algorithm are shown in Algorithm

Algorithm 5.1 .

Let {xi , i = 1, · · · ,N} be a set of data vectors such thatxi = {xi1, · · · ,xid}. Define a booleanwik for

i = 1, · · · ,N andk = 1, · · · ,K.

wik =











1 if ith vector belongs tokth cluster

0 otherwise
(5.1)
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Table 5.1 Notations and terminology. These notations are used in the equations and algorithms de-
scribed in rest of the chapter.

N Total number of data objects in a data set
d Dimensionality of data set
K Total number of clusters
Enk Euclidean distance betweenn andk, wheren∈ N andk∈ K
E Sum of the squared Euclidean distance
lk Number of data objects in clusterk,∀k∈ K
l ideal Number of data objects per cluster in equi-partitioned state; l ideal = |N/K|
L Sum of the squared load values;L = ∑K

k=1(lk− l ideal)
2

P Total number of players;P⊂ K
pi ith player in a game;∀i ∈ P
p−i Set of players in the game other than the playerpi

R Total number of resource centers;R⊂ K
r j jth resource center in a game;∀ j ∈R
r− j Set of all the resource centers not in the current game
Ui Total number of strategies of a playerpi

Si Set of all the strategies of playerpi

si
u uth strategy of the playerpi ; si

u ∈ Si andu = 1, · · · ,U
S Strategy set of all the strategies in the game;S= {S1,S2, · · · ,SP}
S−i Set of all the strategy combinations of all players other than pi

s−i
v A strategy combination consisting of one strategy of all players other thanpi ; s−i

v ∈ S−i

Define a matrixW = [wik] such that
K

∑
k=1

wik = 1, i.e., a data vector can belong to only one cluster (hard

partitioning). Now, letck = (ck1, · · · ,ckd) be the centroid ofkth cluster, whereck j is given by equation

5.2.

ck j =

N

∑
i=1

wikxi j

N

∑
i=1

wik

(5.2)

Then, the intra-cluster variation forkth cluster and the TICV based upon the Euclidean distance mea-

sure is given by Equations (5.3) and (5.4) respectively.

E(k)(W) =
N

∑
i=1

wik

d

∑
j=1

(xi j −ck j)
2 (5.3)

E(W) =
K

∑
k=1

N

∑
i=1

wik

d

∑
j=1

(xi j −ck j)
2 (5.4)
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The objective of the KMeans clustering is to identify the clusters that minimize the sum of squared

Euclidean (SSE) distance measure and hence is given as,

E(W∗) = min
W
{E(W)} (5.5)

Although KMeans is fast, the algorithm is sensitive to the selection of initial cluster-head positions and

Algorithm 5.1 KMeans partitioning
Require: K, data set of sizeN and dimensionalityd
Ensure: the assignmentwnk ∀n∈ N, wherek∈ K

1: randomly initializeK locations ond dimension space with centroidsck,∀k∈ K
2: initialize iteration numberi← 0
3: repeat
4: i← i +1
5: for n = 1 toN do
6: calculateEnk,∀k∈ K
7: find k′, such thatEnk′ = min{Enk}
8: wi

nk′ ← 1, andwi
nk← 0,∀k 6= k′

9: end for
10: updateck according to equation 5.2,∀k∈ K
11: until wi

nk = wi−1
nk ,∀n∈ N andk∈ K

12: return: wnk← wi
nk,∀n∈ N andk∈ K

can easily converge to local optima if the choice of initial partitions is improper. Also, the algorithm

is applicable only for single objective clustering.

5.3.2 Multi-Step Normal Form Game Model

The KMeans identifies the partitions on the basis of minimization of SSE. However, this process

adversely affects the complementary equi-partitioning objective. A game theoretic methodology is de-

scribed in this section to perform clustering of the data by simultaneously optimizing all the conflicting

objectives. Specifically, the process involves the identification of initial clusters using the initialization

step. These clusters are then categorized as players and resource centers, and a game is formalized.

The players in the game compete for allocation of resources from the resource centers. The resource

centers consist of a discrete set of data objects. The strategy of a player is modeled as a tuple consist-

ing of the number of resource units requested from every resource center. The payoff corresponding

to every strategy is a function of the conflicting objectives. A Nash equilibrium solution to the game is
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then evaluated, and the allocations are performed accordingly. After the reallocation, the clusters are

updated. This complete process is repeated until the stopping criteria are satisfied. The steps involved

in the algorithm are described in Algorithm Algorithm 5.2 . The following sub-sections describe the

normal form game theoretic model in details.

Algorithm 5.2 Game theoretic algorithm
Require: K, data set of sizeN and dimensionalityd
Ensure: K partitions optimized on the basis of objectives

1: initialize K cluster centers ond dimensional space
2: perform one iteration of Algorithm Algorithm 5.1 , steps 5-10
3: repeat
4: loadbe f ore← getLoad();SSEbe f ore← getSSE()
5: if ∃k∈ K | lk < l ideal then
6: initialize a new gameG1
7: P←{m | lm < l ideal};R←{n | ln > l ideal}
8: for all rn | n = 1, · · · ,R do
9: rn.overhead← ln− l ideal;rn.consistent← 0

10: end for
11: for all pm |m= 1, · · · ,P do
12: perform minimum cost initial allocation of resources fromR, such thatlm≈ l ideal

13: end for
14: updateln;∀n∈R
15: for all rn | n = 1, · · · ,R do
16: if ln > rn.overheadthen
17: rn.con f lict← 1
18: G1.createStrategySet(); %see Algorithm Algorithm 5.3 %
19: G1.createPayo f f(); %see Algorithm Algorithm 5.4 %
20: G1.evaluateNashEquilibrium(); %see Algorithm Algorithm 5.5 %
21: perform temporary reallocation of units to players according to Nash equilibrium
22: end if
23: rn.con f lict← 0;rn.consistent← 1
24: end for
25: loada f ter← getLoad();SSEa f ter← getSSE()
26: if %∆(load) > %∆(SSE) then
27: commit reallocations
28: update cluster centers according to step 2
29: else
30: break
31: end if
32: end if
33: until FALSE
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Figure 5.1 Identification of optimum clusters using game theoretic clustering (GTKMeans) and
KMeans methodologies. (a)Initial clusters identified by single iteration of KMeans, (b) final clus-
ters after KMeans, (c) formulation of a game with playersp1, p2, p3 and resourcesr1, r2, (d) final
clusters after GTKMeans algorithm

5.3.2.1 Identification of Players

The steps involved during the algorithm can be described with the help of an example1 given in

Figure 5.1. During initialization, the cluster centers arerandomly generated for thed-dimensional

data set. This is followed by the identification of initial clusters by performing a single iteration of the

KMeans. As shown in Figure 5.1(a), theL and theSSEvalues of the initial clusters is not optimal.

If the iterative KMeans as shown in Algorithm Algorithm 5.1 is implemented with the objective of

minimization ofSSE, the final value of theSSEis 38716 (Figure 5.1(b)). However, the corresponding

L value is 106.8, signifying that the clusters are not equi-partitioned. Hence, a game is formulated with

the objective of simultaneous clustering of objects on the basis of compactness and equi-partitioning.

1The data is taken from German Town Data, which is a two dimensional data set with 59 observations, obtained from
[106]. The SSE value for KMeans clustering for 5 clusters is the reported minimum value in literature [85].
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The first step in the formulation of the game is defining the components of the game, i.e., the

players, the resources, the strategies, the payoff functions etc. In this model, the cluster centers with

lk < l ideal,∀k ∈ K are identified as the players in the game. Alternatively, thecluster centers with

lk > l ideal,∀k ∈ K, are considered as the resources in the game. The objective of a player is to re-

ceive the data objects from the resources in such a manner that his compactness objective and the

equi-partitioning objectives are optimized simultaneously. In a situation where multiple players are

requesting units from the same resource center, there is a conflict among the players, so every player

competes against every other player in the game in order to maximize its own utility. One such exam-

ple scenario is displayed in Figure 5.1(c), where the players p2 and p3 will compete to receive units

from the resource centerr1.

5.3.2.2 Definition of Strategy

The feasibility of a game theoretic model largely depends upon the notion of strategy, which is

a major factor in determining the computational complexityof the model. One way of defining the

strategy for a player is to create a tuple consisting of the number of units that the player can request

from every resource available in the system. For example, inFigure 5.1(c), the playerp3, which

requires 6 resource units to realize equi-partitioned situation, could have a strategy{1,5}, i.e., receive

one resource unit fromr1, and 5 units fromr2. The strategy set for the player would consist of all

possible combinations of resource units from the resource locations, and the strategy space increases

exponentially with every unit increase in the number of resource centers. Hence, such a notion of

strategy is applicable only for the games with very few resources, and an alternate notion of strategy

has to be identified for this model.

Algorithm Algorithm 5.3 outlines the steps involved in the formulation of the strategy set for a

player. Essentially, it is a two step process, in which, during the first step, the players try to receive

resource units from the resource locations on the basis of minimum cost allocation methodology, ir-

respective of the allocations made to the other players. Dueto this, a situation may arise where the

resource locations have allocated more resources than the overhead available with them. Therefore,

for every such resource location, a game needs to be formulated and solved to ensure equi-partitioning.

Hence, during step two, the cluster centers that have tried receiving resources from the resource lo-
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cation in conflict are considered as the players in the game. The players’ strategies consist of the

number of resource units they may have to loose in order to ensure that the corresponding resource

location (for which the game has been formulated) is in consistent state, i.e., the resource location

is equi-partitioned. An example scenario described in Figure 5.2 would be helpful in improving the

understanding. As shown in Figure 5.2, the playerp1 has requested 1 resource units from location

r1 and playerp2 has requested 4 units. Due to the requests,r1 may loose 5 units, which would lead

to a situation wherelr1 < l ideal. However, the players only need to loose a total of 3 units andtry

to receive those units from other resource locations to ensure thatlr1 = l ideal. So, a game is played

between the playersp1 and p2, with player p1’s strategy set as{0},{1}, and playerp2’s strategy set

as{0},{1},{2}, with the numbers indicating the resource units the playersmay have to loose in order

to ensure that the resource center is equi-partitioned. Theplayers would receive a payoff for every

strategy, which would be a function of the additional cost incurred for receiving the resources from

the centers that are farther from the player, and the change in L value for the players and the resource.

Modeling of the strategy in the proposed manner reduces the strategy space considerably. Also, the

number of actual players per game is significantly less than the total number of players in the system,

since not all players would have requested units from the resource location that is in the conflict sit-

uation. Effectively, using this methodology, one large game is subdivided into several small games

played in multiple steps.

Algorithm 5.3 Generation of strategy set
Require: resource location in conflict (rn), rn.overhead, set of all playersP
Ensure: strategy setS| S= {S1,S2, · · · SP}

1: identify the set of playersP′ that received allocation of resource units fromrn

2: for all pi | i = 1, · · · ,P′ do
3: numstrategies= min(rn.overhead, units received bypi from rn)
4: for j = 0 to numstrategiesdo
5: Si+ = { j}%number of units a player may have to loose fromrn %
6: end for
7: S+ = {Si}
8: end for
9: returnS
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Figure 5.2 An example for definition of strategy. Here, r1 andr2 are the two clusters with more units
available with them after the initial clusters are identified. p1 and p2 are the players in the game,
competing with each other in order to receive maximum resource units from r1.

5.3.2.3 Payoff Function

The players in a game play their strategies in order to optimize the equi-partitioning and the com-

paction objectives of the resource center for which the gameis played. An expected utility is associated

corresponding to each strategy combination that a player inthe game would receive. This utility is

mathematically modeled as a payoff function, which evaluates the gain or loss a player incurs when it

plays its own strategy, and the other players play their corresponding strategies. In this scenario, the

payoff for a playerpi ’s strategysi
u and the playersp−i strategy combinations−i

v for a game played for

resource centerr j is affected by the following factors.

• Every resource unit that the player intends to loose fromr j is received from the other resource

locationsr− j . This increases the SSE value for the player.

• When the other playersp−i in the game plays−i
v beforepi ’s strategysi

u, the cost incurred for

receiving the resources fromr− j further increases because some of the closer resource locations

might have already allocated resources to the playersp−i .

97



www.manaraa.com

• The load valuelr j value forr j improves as the players try to receive units fromr− j . However,

as the total number of units lost by the players become greater than l ideal, the loadlr j starts

worsening. Hence the absolute value of change inlr j needs to be minimized.

The payoff function captures the inter-relationship of theabove mentioned criteria, and is modeled as

a geometric mean of the total loss incurred by the playerpi in terms of the difference between the SSE

before and after the other playersp−i play their strategiess−i
v , and the absolute value of the loadlr j ,

corresponding to the strategysi
u.

Algorithm 5.4 Payoff matrix generation
Require: strategy setS, playersP′, conflict resource (rn)
Ensure: Payoff matricespoi of playerspi | i = 1, · · · ,P′

1: for all pi | i = 1, · · · ,P′ do
2: rows←| Si |
3: columns←∏P′

b=1,b6=i(| Sb |)
4: create empty payoff matrixpoi of sizerows∗columns
5: for j = 0 to columnsdo
6: for k = 0 to rowsdo
7: rcbe f ore←cost (as a distance measure) incurred topi for receivingk resource units from

resource locationsrm |m 6= n, rm.consistent= 0
8: cccost←change in the load value of system when playersp−i play their strategy combi-

nation corresponding to columnj, and receive resources units from locationsrm | m 6=
n, rm.consistent= 0

9: rca f ter←cost (as a distance measure) incurred topi for receivingk resource units from
resource locationsrm | m 6= n, rm.consistent= 0, after the other playersp−i have played
their strategies

10: rc f inal ← rca f ter− rcbe f ore

11: ccf inal ←| rn.overhead− (cccost+k) |
12: poi [k][ j]←

√
rc f inal ∗ccf inal

13: end for
14: end for
15: end for

5.3.2.4 Nash Equilibrium Solution

The multi-objective clustering problem being modeled as a game is solved using the Nash equilib-

rium methodology. As compared to the other solution concepts available in the literature, only Nash

equilibrium method identifies the social optima. The payoffmatrices evaluated during the previous

step serve as the input to the algorithm, which generates an output as a Nash equilibrium strategy set

consisting of one strategy chosen for every player in the game. At the Nash equilibrium point, no
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player has incentive to change its strategy unilaterally. The Nash equilibrium algorithm is explained

in Algorithm Algorithm 5.5 . After the equilibrium strategies are identified, the reallocation of re-

source units is performed accordingly. The game is then played for other resource locations in conflict

and the allocations are performed accordingly. The clustermeans are then updated, and the complete

process is repeated until there is no further improvement inone of the objectives without worsening of

the other.

Algorithm 5.5 Nash equilibrium algorithm
Require: Payoff Matricespoi of playerspi | i = 1, · · · ,P′
Ensure: Nash equilibrium strategy combinationS∗

1: for all payi | i = 1, · · · ,P′ do
2: identify a strategys∗i such that
3: poi(s1, · · · ,s∗i , · · · ,s∗P′)≥ poi(s1, · · · ,si , · · · ,s∗P′)
4: %Nash equilibrium strategy combination identified on the basis of [36]%
5: end for
6: S∗ = {s1, · · · ,s∗P′}
7: returnS∗

5.3.3 Ensemble Based Game Theoretic Clustering

As shown in the previous sub-section, the simultaneous clustering on the basis of multiple objec-

tives is performed using multiple game iterations, where aniteration consists of multi-step games. The

complexity of this method depends upon the number of data objects as well as the number of clusters,

and thus the response time of algorithm is high for large datasets. Hence, an ensemble method that

performs the complete clustering on the basis of fast mathematical methods followed by a game theo-

retic algorithm has been presented here. In this method, during the first step, a KMeans clustering of

the data objects is performed on the basis of the objective ofminimization of the intra-cluster distance

as explained in the Algorithm Algorithm 5.1 . The clusters obtained after the KMeans algorithm

are not optimal on the equi-partitioning parameter, hence agame is formulated with the players as the

clusters with number of data objects less thanl ideal, and the resources as the clusters with the number

of data objects greater thanl ideal. The game is then played and a Nash equilibrium solution point is

identified. A reallocation of the data objects is performed if relative change in the compactness and

the equi-partitioning values is below the threshold. Since, the game is played only once in this sce-

nario, the notion of the strategy as described in the paragraph 1 of Section 5.3.2.2 can be adopted.
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Although, post KMeans game theoretic model, referred asPKGamehenceforth, does not perform si-

multaneous optimization of multiple objectives, the methodology is fast, and the results obtained for

the experiments are promising.

5.3.4 Analysis of Game Theoretic Algorithm

In this subsection, the methodology is analyzed to evaluateits practicability. First, the compu-

tational complexity of the methodology for the extreme cases as well as the worst case scenario is

identified, then some of the unique attributes of Nash equilibrium algorithm that makes it attractive as

a solution method for this model are discussed. The discussion will conclude with a brief discussion

about the progression of algorithm.

5.3.4.1 Computational Complexity Analysis

In a normal formP-player game with an average number of strategiesS per player, the worst

case time-complexity is given byO(P∗SP) [36] when the game is played in single shot. However,

in the model discussed in section 5.B, a multi-step game has been formulated and solved. So, the

overall computational complexity of playingR such games isO(R∗P∗SP), whereR⊂ K,P⊂ K and

R+P≤ K. K is the total number of clusters. AmongR,P, andS, the complexity is largely governed

by the value ofS, which depends upon the definition of a strategy. As opposed to the natural notion

of strategy as a combination of resource requests from everyresource location, the strategy in this

context has been defined as the number of resources a player may have to loose in order to ensure

that the resource location is in consistent, equi-partitioned state. This restricts the size of strategy

set of a playerpi as | Si |= bN/Kc. Hence, the worst case time complexity of one game is given

asK ∗ bN/KcK , sinceP� K. Now, if the number of clustersK is 1, the computational complexity

would beR∗ (1∗N1) = R∗N. Similarly, if K = N, the complexity would beN ∗1N, sincel ideal = 1.

Therefore, for the extreme cases, the complexity of the system isO(N2)�O(R∗P∗SP). In the worst

case scenario, the number of players in the game is equal to the number of resources in the game.

Hence,K = N/2, and the complexity of the system is given by Equation 5.6.

(N/2)∗ (N/2)∗bN/(N/2)cN/2 = N2∗2(N−2)/2 (5.6)
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The complexity of this algorithm depends primarily on the number of games and the number of data

objects in the data set. Hence, this methodology is ideally suited for multi-objective clustering in small

to medium sized data sets.

The Nash equilibrium solution points possess certain attributes that make the methodology appro-

priate for certain applications. A Nash solution point is socially equitable, which means that every

player in the system is satisfied with respect to every other player, and hence is in equilibrium. Social

satisfaction is important in the scenarios where every objective in a multi-objective clustering has equal

priority. Another important aspect of Nash equilibrium is that, for a mixed strategy non-cooperative

game, a Nash equilibrium solution point always exist [36]. Although, a pure strategy game has been

modeled in this work, the model can be easily extended as a mixed-strategy game by associating

probabilities corresponding to the strategies of a player.

5.3.4.2 Nature of Algorithm Execution

The algorithm consists of multiple games, one for every resource location in conflict. The player

set corresponding to a game consists of the set of clusters that have requested data objects from the

resource center in conflict. Once a game is played for a particular resource location, and players

receive the excess allocation from other resource locations, the location for which the game was played

becomes consistent in terms of equi-partitioning. however, a situation may arise at a later time that

this location again becomes inconsistent due to allocationof units to other players as a result of a

game played for some other resource location. In extreme cases, this may lead to cycling, and the

methodology would take infinitely long time to complete. In order to ensure, that such a situation does

not occur, aflag is associated with every resource for which a game is played,and is set toFALSE

initially. The flag is set toTRUE after a game is played for that resource. All the resources with

flag=TRUEare not considered for reallocation. This ensures that the algorithm progresses in forward

direction and finishes in finite number of steps. However, this may affect the quality of solution.

5.4 Experimental Results

Several single-objective clustering methodologies have been developed and employed for various

applications. However, in the multi-objective clusteringdomain very few methods have been pro-
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posed, which significantly limits the comparative study of the performance of our algorithm. The

performance of our algorithm, referred asGTKMeanshenceforth as compared to the KMeans algo-

rithm, and a modified algorithm emulating the weighted multi-objective optimization methodology

has been evaluated in this section. The first sets of experiments were performed with real data sets

being used in the previous studies. To analyze the algorithmmore closely in terms of efficiency and

quality of the solution, artificial data sets were created tosimulate the real world scenarios, and the

method was exhaustively tested on those data sets. Also, thesensitivity of this method in terms of the

various parameters like the number of clusters, the number of data objects per clusters and the strategy

sets of the players has been investigated in this section.

5.4.1 Simulation Setup

The GTKMeans was tested on some of the data sets that have beenwidely used in literature for

the evaluation of general purpose clustering approaches. The data sets are listed as follows:

• British Town Data (BTD): A data set consisting of four principal socio-economic data compo-

nents corresponding to 50 British towns. The set was obtained from [107].

• German Town Data (GTD): A two dimensional data set containing the location coordinates of

59 German towns. The data set was obtained from [106].

• Iris Data (IRIS): A four dimensional data set consisting of the sepal length, sepal width, petal

length, and the petal width measurements on 150 samples of IRIS obtained from [107].

The real data sets available in the literature often have an intrinsic structure that a specific clustering

methodology attempts to comprehend and cluster accordingly. Due to this property, the clustering

methods that are fitting for certain data sets may not be appropriate for others since they optimize a

single objective. Hence, to better evaluate the performance of an algorithm, and analyze the sensitivity

of various attributes of it, a wider range of artificial data sets need be constructed. In this work,

704 normally distributed data sets consisting of the location coordinates of data objects on a two

dimensional grid of size 12*12 were created. The values of mean and variance were varied from;

σ =±2 and 0≤ µ≤ 10. The size of data sets was varied from 50 to 150 data objectspartitioned into

3 to 10 clusters. Also, intra-cluster similarity measures in terms of number of objects per cluster were
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taken into consideration. As an example, a data set 68 90 would have 90 data objects partitioned

into 6 clusters, with each cluster having the number data objects ranging fromb0.8∗ (90/6)c = 12

to b(0.2∗ (90/6))+ (90/6)c = 15. For each experiment, averages of 200 repetitions were performed

with random cluster center (cluster head) initializations. The Nash equilibrium solution to the n-person

normal form game was identified using theSimplical Subdivisionalgorithm. Among the several Nash

equilibrium methodologies available in literature, the simplical subdivision method has been identified

to work consistently better than other existing methodologies. The algorithm is acceptably fast for the

moderate sized problems. Based upon the simplex method, thealgorithm starts with a given grid size,

and converges to an approximate solution point by iterativelabeling of the sub-simplexes.Gambit

[108], an open source C library of game theory analyzer software toolkit was used for identification

of Nash equilibrium solution. Gambit incorporates severalNash equilibrium algorithms for solving

normal form, extensive form, and Bayesian games. All experiments were performed on a Sunblade

1500 workstation that had 4 GB of RAM.

5.4.2 Experiments with Existing Data Sets

To evaluate the performance of GTKMeans algorithm, we compared it with the classical KMeans

algorithm for the BTD. Since both KMeans and GTKMeans methodologies have similar starting points

and both the methods identify same clusters during the initialization phase, the initial knowledge of

the environment is same for both methods. Afterward, the KMeans algorithm proceeds with an objec-

tive of cluster compaction (SSE), whereas the GTKMeans simultaneously optimizes the compaction

as well as the equi-partitioning measures (L). Figure 5.3 displays a comparative graph of GTKMeans

and KMeans performance for the clustering performed on the British town data [107]. The percent-

age improvement inSSE(Y-axis on left) andL (Y-axis on right) values from the initial clusters for

different cluster sizes is displayed in the graph. As evident from the graph, forK = 4, · · · ,10 the

percentage improvement in theL objective for GTKMeans is much higher than that of the original

KMeans algorithm, whereas the percentage improvement inSSEis more for KMeans as compared to

GTKMeans. This is due to the fact that the KMeans algorithm performs a single objective optimiza-

tion only on the basis of compaction, whereas the GTKMeans algorithm identifies clusters on the basis

of simultaneous consideration of both the clustering objectives. The average improvement inSSEand
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L for GTKMeans is 87.3% and 62.7% respectively. Although the improvement inSSEmeasure is

95.8% in case of KMeans, the equi-partitioning measure improves by only 30.7%. Overall, the GTK-

Means algorithm showed a mean improvement of 20% higher thanthat of the KMeans algorithm for

simultaneously optimizing both the objective functions. To evaluate the performance of the PKGame

methodology, experiments were performed on the German TownData [106]. The performance of the

algorithm in optimizing the two objectives is shown in Figure 5.4. The graph displays the relative per-

formance of the PKGame and the KMeans algorithms. The PKGamemethodology outperformed the

KMeans method in terms of the average percentage improvement in theL for the clusters. The output

characteristics were similar to the previous experiment, and an average overall improvement of 18%

was noted. In an attempt to evaluate the performance of the clustering method in a multi-objective

Figure 5.3 Performance of the algorithms on the British Towndata set. KMeans and GTKMeans
algorithms are compared on the basis of their performance inoptimizing the compaction (SSE) and
the equi-partitioning (L) objectives.

setting, we modified the original KMeans algorithm to incorporate the equi-partitioning objective to

the original compaction objective. In this modified KMeans (MKMeans) method, the clustering was

performed on the basis of a function that was a weighted average of theSSEand theL values of clus-

ter. The weights were kept at 0.5 so that both objectives are equally represented in the solution. The

results from the set of experiments performed on the IRIS data set [107] are shown in Table 5.2. The

table lists the improvements in theL and theSSEvalues obtained after 200 iterations of GTKMeans,
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Figure 5.4 Performance of the algorithms on the German Town data set. KMeans and PKGame al-
gorithms are compared on the basis of their performance in optimizing the compaction (SSE) and the
equi-partitioning (L) objectives.

KMeans, MKMeans, and PKGame algorithms. On average the GTKMeans method outperformed

other methods for majority of experiments. The ensemble based PKGame method also performed

well on most of the data sets. The improvement of PKGame over the KMeans method is attributed to

the fact that the former is a refinement that is performed after the latter finishes. The experiments on

the existing data sets were promising, and showed the potential applicability of this method. Overall,

the game theory based multi-metric clustering method outperformed the KMeans algorithm in terms

of simultaneous optimization of the multiple objectives. Although, the method is slower than KMeans

method in identifying clusters, it provides socially fair solutions. However, a thorough analysis of this

method required further experimentation, and hence, artificial data sets were generated to evaluate the

various sensitivity measures as well as the performance measures of the method.

5.4.3 Experiments with Artificial Data Sets

To evaluate the performance of the two microeconomics basedmethods the multi-objective clus-

tering was performed on the artificial data sets described inthe beginning of this section. An average

of the outputs for improvements inSSEandL values were plotted on graphs as shown in Figure 5.5

and Figure 5.6 respectively. From Figure 5.5, it can be identified that the KMeans algorithm performs
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better than the game theoretic methods for the compaction objective. Also, the performance of the

MKMeans method follows the KMeans closely. This behavior isintuitive as the means based parti-

tioning methodologies optimize only theSSEattribute. However, from the Figure 5.6, it is evident

that the performance of KMeans for equi-partitioning objective is significantly inferior as compared

to the GTKMeans and PKGame methods. This follows from the fact that the two objectives are often

inversely correlated, and the unilateral improvement in one objective function adversely affects the

other objective. However, since the GTKMeans method simultaneously optimizes both the objectives,

the clustering performance was improved by more than 50 percent for both the objectives, as shown

in the graphs. Another observation was that the performanceof the ensemble based PKGame method

did not improve much for the smaller clusters, i.e.K = 3,4, but for the larger number of clusters,

the ensemble method also performed well. Since the KMeans works very well for smaller number

of clusters (3-4), the compactness values are high (also evident from graph), and hence, when game

theoretic method is applied after KMeans, theL improves at the cost ofSSE, which is not desired.

Figure 5.5 Average improvement in the compaction objectivefor the experiments on artificial data
sets. The optimization in theSSEmetric compared to the worst case values is evaluated for KMeans,
GTKMeans, MKMeans and PKGame.
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Figure 5.6 Average improvement in the equi-partitioning objective for the experiments on artificial
data set. The optimization in theL metric compared to the worst case values is evaluated for KMeans,
GTKMeans, MKMeans and PKGame.

5.4.4 Fairness of Clustering

The strength of the game theoretic clustering methodology lies in the fairness of optimizing each

objective with equal priority. To appropriately evaluate the performance of the algorithms, a quantita-

tive measure of the fairness of the algorithms for optimizing SSEandLOADcan be identified using the

Jain’s Fairness Index[109], or a geometric mean of the relative improvement in theclustering criteria.

According to the Jain’s index, the fairness of the methodology is identified using Equation 5.7.

f airness=

(
n

∑
i=1

xi)
2

(n∗
n

∑
i=1

x2
i )

(5.7)

Here,xi corresponds the improvement in theith objective. The fairness value ranges from 0 (worst

case) to 1 (best case). Similarly, The geometric mean of the improvements in the clustering criteria

identifies the average performance of the methodology, equally weighing all the criteria. Table 5.3

shows the fairness metric values for different number of clusters. As shown, the GTKMeans method

has a high Jain’s fairness index averaging 0.98 as compared to the KMeans value of 0.93. This signifies
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that the GTKMeans method optimizes both the objectives withequal priority. Similarly, the geometric

mean of the GKT-Means is higher than the KMeans by more than 15percent. The fairness performance

of the MKMeans method and the PKGame method is also inferior to the GTKMeans fairness.

5.4.5 Sensitivity Analysis

The experimental results on the artificial data sets, shown in the previous subsections give hints

about the sensitivity of this methodology for different design attribute values. In this subsection, we

will closely analyze the sensitivity of the GTKMeans method. The number of players, number of

strategies per game, response time of the algorithm, and structure of the data set significantly affect

the practicability of this method. In the following subsections, we experimentally analyze these pa-

rameters.

5.4.5.1 Data Set Similarity Measure

In many cases, the structure of the data set has a significant impact on the performance of an

algorithm. We generated a wide range of artificial data sets in terms for number of data objects per

cluster defined as the similarity measure, and radius of a cluster asσ =±2 on a 10*10 grid. The effect

of structure on the execution time of the algorithm for different similarity measures and cluster sizes is

shown in Figure 5.7. As shown, the similarity measure does not significantly impact the performance

of the algorithm, i.e., on average, the execution time of theGTKMeans algorithm is independent of

the structure of the data set, and hence it is suitable as a general clustering methodology. The average

performance in terms of fairness of allocation is shown in Table 5.3. The geometric mean fairness is

in range 60-80 percent, which is a good measure of fairness. Hence, the structure of a data set does

not adversely affect the performance of this methodology.

5.4.5.2 Number of Players and Strategies

An important consideration during the modeling of a problemin a game theoretic framework is

the impact of the size of game. The size determines the complexity, and consequently the performance

of the system. Thus, we evaluated the average size of the gamein terms of the number of players and

the strategies for different clusters. The graph shown in Figure 5.9 displays the range of players and
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Figure 5.7 Effect of data set similarity measure on the execution time of the GTKMeans algorithm.
The initial data set similarity measure is given as the degree of similarity in the sizes of the initial
clusters. A higher degree of similarity results in initial clusters with almost equal number of data units
per cluster.

consequently the strategies for different clusters. An important observation is that although the average

number of players increases as the cluster size increases, the total number of players is significantly

less than half the cluster size, which is the worst case scenario. For example, on average there are at

most 3.5 players for the data sets with 9 clusters. It is also important to note that the average strategy

size does not increases exponentially as a function of the number of players, which is the intuitive

notion in a game theoretic setup. This behavior is attributed to the alternative definition of a player and

strategy for our model as discussed in section 5.3.2.2. The modeling controlled the complexity of the

system significantly. However, the surge in the number of strategies for data sets with large number

of clusters indicate that the GTKMeans is better suited for multi-objective clustering of medium sized

data sets with a less number of clusters per data set.
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Figure 5.8 Relationship between the execution time and the number of clusters. The algorithm execu-
tion time of KMeans and GTKMeans are compared in this set of experiments. Additionally the worst
case and the average case execution times are plotted and compared.

Figure 5.9 Average number of players and strategies for different cluster sizes. For different clus-
ter sizes, the average number of players and strategies per game indicate the size of the game and
consequently the execution time and the feasibility of the clustering algorithm.
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5.4.5.3 Execution Time

The multi-objective clustering methodology presented in this work is slower than the KMeans

method by multiple orders of magnitude. Similar is the case with other heuristics based methodologies.

In order to quantify the effect of number clusters on the execution time of the algorithm, and analyze

the performance extremes, we plotted average execution time and the maximum execution time for

different number of clusters. As shown in Figure 5.8, for smaller number of clusters, i.e.,K = 3, · · · ,8,

the GTKMeans performs well and identifies the optimum clusters within 10 seconds. Also, the worst

case performance follows similar trend and is within 100 seconds. However, for larger number of

clusters, the performance decays exponentially. This is due to the fact that as the number of clusters

increase, the potential number of clusters and correspondingly the strategies increase significantly, and

the game becomes large. The time complexity of the Nash equilibrium algorithm is exponential, which

results in slower execution time for such cases.

5.5 Discussion

A novel microeconomics based algorithm for multi-objective clustering problem has been devel-

oped in this research. In this algorithm, a non-cooperativemulti-player normal form multi-step game

is formulated with the subsets of initially identified clusters as players. Any mathematical partitioning

method can be employed to identify the initial clusters and to update the clusters after an iteration of

the game. A Nash equilibrium based method is used to solve thegame theoretic formulation. This al-

gorithm is independent of the type and the number of objectives that can be simultaneously optimized.

Also, an ensemble based game theoretic optimization algorithm has been developed in this work. In

the ensemble based method, the KMeans partitioning is performed first, followed by a game theoretic

formulation based upon the sizes of the clusters. The experimental study on the existing and artifi-

cial data sets provides important insights for the game theoretic clustering algorithm. As compared

to the KMeans, this algorithm performs significantly betterin terms of the fairness toward improv-

ing the clustering criteria. Also, the complexity of the algorithm in terms of players and strategies

is much lower as compared to the classical normal form game theoretic modeling. This is attributed

a novel definition of strategy. This algorithm is not sensitive the structure of the data set. However,

the algorithm does not scale very well with the size of the data sets in cases where the number of
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clusters increase. Overall, this model is well suited for a multi-objective clustering problem where the

objective functions are complementary and need to be optimized simultaneously.

The domain of multi-objective clustering is receiving significant attention as the newer multidis-

ciplinary research areas are emerging. This first attempt inpropounding a game theoretic solution is

attractive. The applications of this algorithm may requireseveral objectives to be considered simulta-

neously, depending upon the application area. Also, an alternate modeling of the payoff function may

improve the cost function in terms of capturing the essence of competitive objectives, and thus need

further investigation and refinement. A logical next step inresearch is to model this game theoretic

clustering approach for dynamically changing scenarios. Similarly, techniques for pruning the strategy

sets would also result in multi-fold improvement in the performance and complexity of the model.
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Table 5.2 Performance of the algorithms on Iris data set. Theclustering algorithms KMeans, MKMeans, GTKMeans, and PKGame are compared for
their performance on two optimization metrics, compaction(SSE) and equi-partitioning (L).

Total Average Improvement in SSE† Value (in %) Average Improvement in L‡ Value (in %)
Clusters KMeans MKMeans§ GTKMeans¶ PKGame†† KMeans MKMeans GTKMeans PKGame

2 94.5 93.9 84.3 94.5 45.8 40.3 57.1 45.8
3 93.7 97.4 76.8 93.8 35.9 75.9 57.6 35.9
4 93.6 98.2 72.4 86.1 35.6 64.5 94.2 99.9
5 93.6 98.3 75.4 90.4 33.6 55.8 82.0 97.9
6 93.2 98.7 67.2 91.4 30.1 55.2 61.7 91.4
7 93.4 98.8 63.9 93.6 29.5 44.7 75.2 90.8
8 93.9 98.9 51.9 94.9 30.8 51.7 59.4 82.9
9 93.8 99.0 59.8 95.2 29.6 45.7 60.2 83.4
10 94.2 99.0 72.2 95.0 29.0 43.1 69.9 86.1
11 94.7 99.1 66.3 95.7 31.8 43.0 66.2 85.1

†: Sum of Squared Euclidean Distance (SSE) corresponds to the compaction objective
‡: Load(L) corresponds to the equi-partitioning objective
§: Modified KMeans (MKMeans) algorithm
¶: Game Theoretic KMeans (GTKMeans) algorithm developed inthis research
††: Post KMeans Game Theoretic (PKGame) ensemble based algorithm developed in this research
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Table 5.3 Fairness of the clustering algorithms. The KMeans, MKMeans, GTKMeans and PKGame algorithms are compared on the basis of the
quantitative measure of the fairness of the clustering. Thetwo fairness indexes used for the comparison are Geometric mean fairness index and Jain’s
fairness index.

Clustering Geometric Mean Fairness Index Jain’s Fairness Index
Algorithm 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

KMeans 57.1 60.5 61.2 59.4 60.1 60.9 56.9 62.0 0.89 0.94 0.95 0.93 0.93 0.95 0.93 0.96

MKMeans 64.0 65.9 65.2 64.9 63.7 62.2 62.0 62.7 0.92 0.94 0.94 0.94 0.94 0.92 0.92 0.92

GTKMeans 78.0 73.8 72.7 71.2 77.1 73.8 74.3 76.2 0.90 0.98 0.98 0.97 0.97 0.98 0.97 0.99

PKGame 57.1 66.5 56.7 46.3 36.5 41.3 41.8 44.9 0.90 0.88 0.80 0.72 0.66 0.72 0.74 0.78
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CHAPTER 6

GAME THEORETIC APPROACH TO ROBOT TEAM FORMATION

The aggregation of robots into teams is necessitated due to the limited power and communication

capabilities in emergency environments. The formation of teams of robots significantly enhances

the performance and efficiency of search and rescue missionsin such environments. As opposed

to the classical partitioning application domains, the robot aggregation requires multiple conflicting

objectives to be optimized. We present a new method for simultaneous multi-objective partitioning

of robots into teams, which is based on the concepts of microeconomics. The method utilizes the

strengths of KMeans algorithm, game theoretic modeling, and Nash equilibrium methodology for

fast and socially fair partitioning. In this work, partitions are created to identify decentralized teams

of robots in such a manner that each robot in a team closest to its communication gateway, as well

as each team is equally represented in terms of its strength (battery power). Rigorous simulations

were performed to evaluate the performance of the method, and the results indicate that our method

performs significantly better than the KMeans methodology,and identifies good solution points.

6.1 Problem Description

In the recent years, search and rescue robotics has emerged as an important emergency response

function. Mobile robots have been shown to be a valuable resource during the exploration missions

in the event of such emergencies [110]. These robots are involved in collecting and integrating the

information, and transmitting it to the base station for further deliberation. In a centralized system,

this requires each robot to maintain a wireless connection with the base station and constantly send

the information packets. However, this communication is significantly limited by the strict constraints

of battery power, low radio range, and constantly changing environment for every robot.

For a detailed explanation of the steps involved in the multi-emergency robot deployment and the

issues faced in the process, please refer to Figures 6.1 – 6.5.
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• Figure 6.1 shows a scenario where multiple emergency situations have emerged in a locality

in a time-overlapped manner. Often in such situations, the deployment of emergency response

personnel is not feasible, and hence robotic units play an important role in the search and rescue

missions.

• The robots deployed in the field requires two types of communication. Each unit needs to com-

municate with the base station to receive the command and control. The feedback from the

emergency location is continuously transmitted to the basestation. Also, the robots communi-

cate with each other in order to coordinate the coverage areaamong them. This ensures that the

complete terrain is covered. The deployment of robots and the interconnection network being

established in such scenario is shown in Figure 6.2.

• However, a point-to-point grid based networking scheme where each node communicates with

every other node and the base station is not feasible in thesescenarios. This is shown in Figure

6.3. Due to the limited battery power and high communicationoverhead, a few robotic units may

drop out of the system as the time progresses, resulting in a situation where the communication

with some of the emergency location would be lost.

• Thus, a partitioning mechanism may be used to form teams of robot units, such that each par-

tition has a set of robots that are close to each other and hence dissipating less power in intra-

cluster communication. Also, a partition head is decided among the nodes of the partition

(possibly the one with maximum available battery power) which is responsible for the inter-

cluster as well as the cluster to base station communication. In this manner, the communication

overhead is reduced and the robots may sustain in the field forlonger duration. If a classical

clustering scheme like KMeans is used for partitioning, theteams are formed as shown in the

Figure 6.4.

• However, the partitioning requirements in a multi-emergency rescue and response are different

from other environments, in the sense that the partitioningis required to be performed on the

basis of multiple criteria. In this particular case, the teams of robots being formed should possess

two important properties; the intra-cluster communication should be minimized to reduce the

power dissipation in communication, and each team should beequally represented in terms of
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its capabilities. The set of capabilities could be anythingranging from the equal distribution of

the robotic units in terms of their rescue capabilities, thedistribution of robotic units that are

specialized to perform certain jobs, or a simple equal distribution of the total battery power in

each cluster to ensure that each emergency location is examined with equal capabilities. The

classical partitioning algorithms are largely single metric optimization methods, and thus can

not be used for partitioning. They often result in formationof partitions that are either too large

or too small. One such partitioning result is shown in Figure6.5, where a couple of partitions

are too large and a couple of them are too small. If the partition is too small, the robots in that

partition will have to perform all the work, as well as communication, and will soon drop out of

the network due to rapid power dissipation.

Figure 6.1 Example of a multi-emergency situation in a suburban area. Several emergency manage-
ment resources are allocated to the emergency locations forsearch, rescue, response and recovery
process.

Although, the issue of work distribution to the robots within a team [111, 112] has received sig-

nificant attention, the development of specialized algorithms for optimal aggregation of robots into

teams has not been explored. Unlike classical application domains like data mining, bio-informatics,

computer vision and pattern recognition, computer and communication networks, and information

systems [11,12], where object and data clustering are performed on the basis of single objective, multi-

disciplinary applications like robot team formation require multiple criteria (that may be conflicting
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Figure 6.2 An example of search and rescue robot deployment in multi-emergency scenario. The
robotic units are deployed in situations where search and rescue situations are complex and inacces-
sible to humans. A primitive inter-connection network is established to monitor progress in real time
and share the information among the robots, and between robots and the base station.

Figure 6.3 Effect of high communication overhead on the search and rescue process. As a result of
high communication bandwidth and the limited battery powerof each robot, the robotic units may die,
thereby disrupting the response from some emergency locations.
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Figure 6.4 Partitioning of robots such that the intra-cluster communication is minimized, and each
partition has a head node responsible for inter-cluster communication.

Figure 6.5 Partitioning results for robot team formation using KMeans algorithm. Since KMeans
performs the partitioning on the basis of a single objectiveof cluster compaction, the teams identified
using this algorithm are such that some of the teams are very large in size, whereas some of the teams
are very small in size.
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in nature) to be optimized. Some of the partitioning criteria in this domain include compaction, equi-

partitioning of robots on the basis of capabilities per partition, number of units per partition, availabil-

ity of average battery power per partition, or equi-distribution of workload per partition, etc. Hence, a

technique for simultaneous optimization of conflicting objectives needs to be developed. In this work,

we have developed a novel methodology that performs simultaneous multi-objective partitioning of

robots into teams. The methodology consists of three important components:

• An iterative hill climbing partitioning algorithm

• A multi-step normal form game theoretic model

• A Nash equilibrium (NE) based solution methodology

6.2 Why Microeconomics for Robot Team Formation?

In the context of rescue robots, due to the power and communication constraints, compactness and

uniform power distribution have been considered as the objectives to be optimized. Since these two

objectives are conflicting, and thus convex in nature, the system can be naturally modeled as a game.

Also, as shown in [13], if the payoff function is convex, a Nash equilibrium solution always exists and

tends to evaluate globally optimal solutions.

In multi-emergency environments, it is desirable to ensurethat all emergencies receive resources

in a fair manner. Fairness has several connotations, but in this case it corresponds to a situation where

each emergency receives its fair share of rescue robots. Game theory exhibits a unique property social

equity or social fairness [13], which ensures that each player in the game is satisfied and the overall

goals are reached. The game theoretic social equilibrium inherently ensures the optimum values of

each objective with respect to other objectives, which is desirable in these scenarios.

6.3 Background

The real time applicability of mobile robots for urban search and rescue (USAR) was first rec-

ognized during the World Trade Center disaster [113]. The research in the domain of USAR, and

human-robot integration (HRI) [114] has identified explicit communication among the robots as a

big obstacle. This is attributed to the limited network bandwidth, limited battery power of robots, and
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noisy communication channels. An effective solution to this problem is to cluster the robots into teams

to ensure robustness and reliability. In [115], the authorshave discussed the performance of several

rescue robots at the RoboCup Rescue Real Robot League competitions, and have identified that the

multiple robot cooperation, and teams of robots could maximize the search regions, and utilize and

enhance the abilities of robots in search and detection missions. However, much research concentrates

on the identification and optimization of task distribution, and cooperation among the robots within a

team [111].

In [112], the use of stochastic game theory to model cooperation among the robot team on the

basis of observation history has been demonstrated. Similarly, in [116], the authors propose a hybrid

robotic communication mechanism that uses robot vision andradio signals for improved communi-

cation. In [117] the multi-robot exploration problem has been addressed from a different perspective

by suggesting a KMeans based clustering of the unknown search space and allocating the space to the

robots for exploration.

The problem of object partitioning has been investigated inthe context of a wide range of applica-

tions, and reported in literature. Detailed surveys of these works can be found in [11,69]. An elaborate

discussion of these methods on the basis of partitioning criteria like compaction, equi-partitioning,

connectedness, and spatial separation can be found in [12, 78]. The KMeans [74] is the simplest and

most widely used mathematical algorithm for partitioning on the basis of compaction. It is used for

creating initial partitions in our approach discussed later. Additionally, some heuristics based tech-

niques [83, 88] and hybrid approaches [85] have been proposed in literature. However, all of these

methodologies are limited to single objective optimization. In the realm of multi-objective optimiza-

tion, the proposed models primarily consist of ensemble methods [89] that perform single objective

optimization using different methods for different objectives, and integrate the resultsa posteriori.

These methods do not exploit the real strength of simultaneous multi-objective optimization.Mi-

croeconomic optimizationmethods are capable of naturally modeling the situations ofconflict and

cooperation in a game theoretic setting as discussed in the previous section. It models optimization

problems in a framework consisting of players with conflicting objectives competing to optimize their

individual as well as the system wide utilities [27, 28]. Thegame is solved using Nash equilibrium

based methodology that identifies a socially fair solution [36].
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In this work, we identify the robot team formation problem asa multi-step normal form non-

cooperative game. A subset of initial partitions identifiedby KMeans algorithm are modeled as play-

ers, and the remaining as resources, different combinations of robot requests by players from different

resource centers as strategies, and a function of competingobjectives compactness and uniform power

distribution as the payoff. The partitions are updated iteratively on the basis of NE solutions until the

stopping criterion is satisfied.

6.4 Microeconomic Modeling

In this section, we describe the partitioning algorithm formulti-robot team formation. Since this

is an application of the multi-objective clustering approach being presented in Chapter 5, the method-

ology follows the same steps for most part. In this section, we will briefly discuss the steps involved

in the algorithm. Please refer to Section 5.3 for detailed description of these steps.

The algorithm identifies the initial partitions using the KMeans clustering method, and if the initial

partitions are not optimal, a game is formulated with the partitions as players and resources. A Nash

equilibrium solution of the game identifies the optimal reallocation of robots to the partitions. The

notations and terminology being used in the rest of the paperare given in Table 6.1.

6.4.1 KMeans Partitioning

This methodology requires the KMeans algorithm to identifyinitial as well as the updated teams

of robots. The KMeans algorithm partitions the total numberof robotsN into partitions (K) depend-

ing upon the number of emergency locations in a region. Each team would perform the search and

rescue operations at the corresponding emergency location. The steps involved in the mathematical

partitioning process are:

• Initialize the random partition heads at the coordinate locations near the emergency locations.

• Calculate the distance (Euclidean in this case) of each robot from each of the partition heads,

given as:

E(k)(W) =
N

∑
i=1

wik

d

∑
j=1

(xi j −ck j)
2 (6.1)
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Table 6.1 Notations for robot partitioning. The notations are used in developing the algorithm for
robot teams formation on the basis of compaction for low power dissipation in communication, and
equi-partitioning for uniform power distribution.

N Total number of robots in the system
d Total number of attributes of a robot (coordinates)
K Total number of partitions
Enk Euclidean distance betweenn andk, wheren∈ N andk∈ K
E Sum of the squared Euclidean distance
lk Number of robots in partitionk,∀k∈ K
l ideal Number of robots per partition in a uniform power distribution situation;l ideal = |N/K|
L Uniform Power Distribution Measure;L = ∑K

k=1(lk− l ideal)
2

P Total number of players;P⊂ K
pi ith player in a game;∀i ∈ P
p−i The set of all the players in the game other than the playerpi

R Total number of resource centers;R⊂ K
r j jth resource center in a game;∀ j ∈ R
r− j Set of all the resource centers not in the current game
Ui Total number of strategies of a playerpi

Si Set of all the strategies of playerpi

si
u uth strategy of the playerpi ; si

u ∈ Si andu = 1, · · · ,U
S Strategy set consisting of all the strategies in the game;S= {S1,S2, · · · ,SP}
S−i Set of all the strategy combinations of all the players otherthanpi

s−i
v A strategy combination consisting of one strategy of all theplayers other thanpi ; s−i

v ∈ S−i

E(W) =
K

∑
k=1

N

∑
i=1

wik

d

∑
j=1

(xi j −ck j)
2 (6.2)

Here, Equation (6.1) corresponds to the distance measure for thekth partition and Equation (6.2)

corresponds to the total intra-partition variation.

• Assign the robot to the partition according to the sum of squared Euclidean distance (SSE)

measure, as given by Equation (6.3).

E(W∗) = min
W
{E(W)} (6.3)

6.4.2 Game Theoretic Partitioning of Robots

The process of identifying partitions with the objective ofminimization of SSE measure adversely

affects the complementary power distribution objective (denoted byL). Hence, a game is required

to be formulated to simultaneously optimize all the conflicting objectives. Specifically, the process

involves the identification of initial partitions using theinitialization step of KMeans algorithm. These
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partitions are then categorized as players and resource centers, and a game is formalized. The players

in the game compete for allocation of resources (robot units) from the resource centers. The strategy

of a player is modeled as a tuple consisting of the number of robots requested from every resource

center. The payoff corresponding to the various strategiesrepresents conflicting objectives. After the

formulation of the game, a Nash equilibrium solution point is evaluated and the allocations are per-

formed accordingly. After the reallocation of robots to thepartitions according to the game theoretic

solution, the partitions are updated using the KMeans algorithm. This complete process is repeated

until optimum partitions are identified. The steps involvedin the algorithm are described in Algorithm

Algorithm 6.1 .

Algorithm 6.1 Microeconomic robot team clustering algorithm
Require: Locations of robots, initial number of partitions, initialallocation of robots to the partitions

after KMeans
Ensure: Optimal Partitioning of robots into teams on the basis of power distribution and compaction

objectives
1: if for each partitionk then
2: The conditionlk = l ideal is satisfied, then report the solution as optimal, and exit.

Here,l ideal = number of units per cluster at the uniform power distribution state
3: else
4: Classify the unequal partitions as players and resources:
5: Players: allk, such thatlk ≤ l ideal;
6: Resources: allk, such thatlk ≥ l ideal;
7: end if
8: for For each resource locationdo
9: Players formulate a game with their strategies, to receive units from the resource, so that the

overheads are distributed among the players and the resource achieves a consistent state (l ideal).
10: The game is then solved for an equilibrium solution point using Nash equilibrium algorithm
11: end for
12: After the reallocation, the new partition centers are identified, and the process is repeated until

convergence

The generation of the strategy set involves the players trying to receive units from the resource

locations on the basis of minimum cost allocation methodology, irrespective of the allocations made

to the other players. However in this process, a situation may arise where location has allocated more

units than its overhead. Therefore, a game is formulated andsolved for that resource location, and

subset of partitions that have tried receiving units from itplay the game. The strategies of the players

consist of the number of units they may need to lose in order toensure that the resource location is in

consistent state, i.e., it has a uniform power distribution. Due to this alternative definition of strategy,
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a single step game with an exponential strategy set and largenumber of players is reduced to multiple

games of with significantly smaller strategy sets and players. The details of the steps followed for

defining the strategy set for the game theoretic formulationare given in Section 5.3.2.2.

Each strategy combination in a game has an expected utility that a player would receive. The

utility is mathematically modeled as a payoff function evaluating the gain or loss a player would incur

when it plays its own strategy and the other players play their corresponding strategies. The payoff

function in this model captures the inter-relationship of the optimization criteria, and is modeled as a

geometric mean of the total loss incurred by a player when it plays a particular strategy. Specifically,

a player would have to receive units from a distant resource location if the other players request for

all the units available with the current resource location.The payoff, a function of power distribution

metric and compaction metric is the loss to the player when such a situation occurs. The algorithm for

payoff function is given in Algorithm Algorithm 5.4 in section 5.3.2.3.

The payoff matrices evaluated during the previous step are given as input to the Nash equilibrium

(NE) algorithm, which generates an output as a NE strategy set consisting of one strategy chosen

for every player in the game. At the Nash equilibrium point, no player has incentive to change its

strategy unilaterally. Mathematically, the NE point is given by Equation (6.4). After the equilibrium

strategies are identified, the reallocation of units is performed accordingly. The game is then played

for other locations in conflict and the allocations are performed accordingly. The partition medoids

are then updated, and the complete process is repeated untilthe relative improvement in the power

distributions does not supersede threshold decrease in thevalue of SSE.

poi(s
∗
1, · · · ,s∗i , · · · ,s∗P′)≥ poi(s

∗
1, · · · ,si , · · · ,s∗P′) (6.4)

6.5 Experimental Results

In this section, we present the experiments that were carried out to evaluate the efficacy of the

methodology for robot team formation. Since there are no benchmarks available for multi-objective

robot partitioning, several artificial data sets were created to simulate the real world scenarios. The

performance of the microeconomic model was compared with the classical KMeans algorithm.
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6.5.1 Simulation Tools and Setup

To simulate the locations of robots on a terrain the following setup was formulated:

• A two dimensional grid of size 12*12 was created, and normally distributed data sets consisting

of the x-y coordinates of the robot locations on the grid weregenerated.

• The values of mean and variance were varied from 0≤ µ≤ 10 andσ =±2 respectively for each

data set.

• The data sets with 35 nodes were generated, with 3 to 7 clusters per data set.

• The intra-partition similarity measures in terms of numberof robots per partition were taken

into consideration. For example, a data set 57 would have 5 partitions, each partition having

the number of robots ranging fromb0.7∗ (35/5)c = 4 to b(0.3∗ (35/5))+ (35/5)c = 9.

• Each experimental result was an average of 200 repetitions with random gateway location ini-

tializations.

• The Nash equilibrium (NE) solution to the n-person normal form game is identified using the

Simplical Subdivision algorithm, which has been identifiedto work consistently better than

other existing NE methodologies available in literature. Based upon the simplex method, the al-

gorithm starts with a given grid size, and converges to an approximate solution point by iterative

labeling of the sub-simplexes.

• Gambit [108], an open source C library of game theory analyzer software toolkit for identifica-

tion of NE solution was used as a solution methodology.

6.5.2 Analysis

Experiments were conducted to study the performance of thismethod in simultaneously optimiz-

ing the objective functions; the compaction measure (SSE) and the uniform power distribution measure

(L). As shown in Figure 6.6, for a data set 67 that consists of 6 gateways, and 35 robots distributed

among the gateways, our methodology identifies the partitions with theSSEof 58.86, and theL being

10.83, which contributes toward an improvement of 90.3% and90.2% respectively from the initial

values. However, for the KMeans algorithm, although the improvement in compaction is 1.3% higher
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than game theoretic method, the power distribution objective is 45.1% worse. Overall, the game theory

based multi-metric optimization method outperforms the KMeans algorithm in terms of simultaneous

optimization of the multiple objectives.

Figure 6.6 Identification of optimum sizes of the clusters and the locations of the cluster centers using
game theoretic algorithm, and KMeans algorithm. Total number of robots = 35, total number of
gateways = 6, and name of data set = 67.txt.

The average performance of the new method was also compared with the KMeans algorithm. All

35 data sets were executed and average of the outputs for improvements inSSEandL were plotted on

a graph as shown in Figure 6.7. As shown, the improvement in the compaction objective is higher for

the KMeans algorithm. This is intuitive since KMeans performs the partitioning only on the basis of

optimization of compaction objective. However, this adversely affects the uniform power distribution

objective, and is evident from the graph.

In contrast, our algorithm simultaneously optimizes both the objectives. It is important to note

that both the objectives are optimized with an average improvement of more than 50% in terms of

results. An interesting observation is that as the number ofpartitions increase, the performance of this

method improves and after certain limit it degrades. This isdue to the increasing dimensionality of the

problem. If the number of partitions are too few, the initialpartitions identified by the initial iteration
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Figure 6.7 Average performance of algorithms on artificial data sets. The KMeans and the game
theoretic algorithm are compared for their performance on the cluster compaction (SSE) and uniform
power distribution (L) metrics.

of KMeans optimally partitions the data, and a game is not formulated often. As the partitions increase,

the KMeans initialization is unable to identify optimum clusters resulting in multiple iterations of game

formulation and hence simultaneous optimization of objectives. However, as the partitions increase

beyond a certain limit, the number of strategies per game increase and the game theoretic model in

its current form prunes the strategy set to control the dimensionality of the problem. Due to this,

occasionally the strategies that are not locally optimal but have a global effect may get pruned thereby

affecting the performance.

The response time of a microeconomic model largely determines its practicability in an applica-

tion domain. The parameters that largely govern the response time for game theoretic model in this

context include the number of players, the number of partitions, and the total number of strategies of

players. Table 6.2 shows the average values of these parameters for different number of gateways. For

smaller number of partitions, the initial KMeans clustering is often optimal and a game is not required

to be played, and hence average number of iterations of game is less than one. The results on the

simulated data sets are promising because as the number of partitions increase, the number of strate-

gies do not increase exponentially, which is a concern with most of the problems modeled in a game

theoretic framework. The linear relationship between the size of strategy set and number of partitions

is attributed to the novel definition of the strategy and the modeling of the game in this context of this

128



www.manaraa.com

work. The strategy set for a player in this model does not depend on combinations of the number of

resource locations that are availing the resources, but on the number of units a player may have to lose

for keeping the resource in a consistent state.

Table 6.2 Parameters affecting the game theoretic model. The inter-relationship between the important
attributes of a game such as the number of players, number of strategies, number of clusters, total
number of game iterations, and the execution time of the algorithm is identified.

Partitions 3 4 5 6 7
Avg. Iterations of Game 0.23 0.80 1.52 1.96 2.02
Avg. Number of Players 0.22 0.60 1.39 1.60 2.13

Avg. Number of Strategies 0.32 2.08 4.71 5.27 6.77
Response Time (sec.) 0.0003 0.0627 0.1447 0.1615 0.1968

6.6 Discussion

A novel microeconomic approach for multi-objective robot team formation problem has been de-

veloped in this research. It models the problem as a hybrid approach involving Kmeans and non-

cooperative multi-player normal form game with Nash equilibrium based solution. The objective

functions being considered in the model are compactness, and uniform power distribution. The sim-

ulations have been conducted using normally distributed artificial data sets. The performance of this

method as compared to the KMeans algorithm conforms to the claim that our model is better suited

for robot aggregation than the existing partitioning methods. The average complexity of the system

is non-exponential. This is the first successful attempt in the direction of robot team formation on

the basis of multiple objectives. Currently, the model is simplistic, and optimizes only two objectives

simultaneously. However, the practical implementation ofthe model may require more objectives, like

improved radio communication, minimum inter-team communication, etc. to be considered. In such

scenarios, the payoff modeling would need further investigation and refinement. Also, in practice, the

capabilities of each robot are different, and such considerations must be reflected in the modeling. It

is required to deploy robots in several real world test scenarios to efficiently and accurately evaluate

the performance of the algorithm.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

Successful packing two billion transistors on a single chip[10] gives a clear idea about the level

of miniaturization, and density of the next generation VLSIcircuits. This increase in the integration

uncovers numerous issues that have to be addressed by the designers in order to realize high perfor-

mance, low power dissipating, and reliable circuits. Some of these concerns include the impact of

process variations at nanometer level, the effect of various performance metrics on each other, and the

efficiency of the circuit optimization methods. It is a challenging task to address all these issues in a

single model. The focus of this dissertation is to address all these concerns in the VLSI domain, and

to develop a framework that is capable of solving the currentas well as next generation VLSI circuit

optimization problems.

The size of an optimization problem in any engineering discipline encourages the use of clustering

mechanisms to partition a large problem into smaller problems, and solve them separately. However,

it is difficult to adapt the knowledge and intelligence from classical clustering disciplines to solve this

problem. Specifically, in situations where the clustering needs to be performed on the basis of multiple

objectives that may be competitive in nature, single objective clustering algorithms can not generate

good clusters. Thus, the development of a generalized clustering mechanism for such problems is

imperative.

In this dissertation, we have developed multi-metric optimization frameworks to solve the VLSI-

CAD circuit optimization problems and spatial pattern clustering problems, using utilitarian methods.

The specific problems being solved in this dissertation are as follows:

• A post layout gate sizing algorithm for multi-metric optimization of delay, leakage power, dy-

namic power, and crosstalk noise in the presence of process variations [118]. The algorithm

generates a deterministic equivalent of the inherently stochastic optimization problem, while

ensuring high utility levels. It is independent of the process variation distributions and can in-
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corporate the impact of variations due to gate sizes as well as interconnects. The algorithm is

also capable of incorporating randomness in the objective functions.

• Development of a unified mathematical programming based framework for multi-metric opti-

mization of delay, leakage power, dynamic power, and crosstalk noise in the presence of process

variation. The framework can be implemented using any mathematical programming technique,

and is completely reconfigurable in terms of prioritizing orselecting the metrics to be optimized.

• Development of a simple yet effective cross-talk noise model and identification of relationships

between the different performance metrics in terms of gate sizes.

• Development of a novel game theoretic clustering approach for simultaneous multi-metric clus-

tering of spatial data objects. A general framework is developed that can incorporate any number

of conflicting clustering objectives.

• The game theoretic clustering approach is applied to solve the multi-objective robot team par-

titioning problem in multi-emergency search and rescue missions [119]. The partitioning is

performed on the basis of cluster compaction and uniform power distribution.

The utilitarian methods being applied in this dissertationpossess certain unique attributes that have

made their application suitable to solve these problems, and the identification of these methods is

an important contribution of this dissertation. The expected utility based approaches change the per-

spective of solving the stochastic gate sizing problem withrandom constraints to a deterministic risk

minimization problem with an objective of maximization of expected utility of the satisfaction of the

constraints. This transformation significantly reduces the time complexity of the algorithm, while

maintaining a high yield. This is a prime contribution of this dissertation. The modeling of a cluster-

ing problem in a game theoretic framework is novel. The new definition of strategies for the players

has contributed toward significant reduction in the time complexity of the algorithm. A novel defini-

tion of payoffs as a function of equi-partitioning and compaction is unique. The application of spatial

clustering algorithm for the robot team formation is a practical problem, and this is one of the very

few works that have addressed the problem with this perspective.
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The approaches presented in this dissertation are novel andhave wide applicability in the various

areas of research. Some of the future directions to improve over this dissertation work, and other

interesting research ideas are listed as follows.

• The multi-metric optimization model for VLSI circuit optimization presented in this disserta-

tion incorporates four metrics that have been optimized. Additional metrics like security and

reliability etc. can be incorporated easily once the relationship between the metrics in terms of

gate sizes is identified.

• The expected utility based methods can be utilized for various circuit optimization techniques

like buffer insertion or repeater insertion and wire sizing. These methods also find applications

in solving the multi-metric optimization problems using gate sizing at the logic level or RTL

level.

• The expected utility based optimization presented in this dissertation assumes that scarce infor-

mation in terms of only mean and variance of the process variations is available. However, if

more information in terms of coefficient of correlations is also available, the model can be fur-

ther extended to incorporate such information and formulate a linear programming equivalent

model with quadratic constraints [94].

• The VLSI multi-metric optimization problem contains an objective function that is deterministic

in nature. However, the expected utility based method is capable of solving the problems with

random objectives also. This is an interesting future work for multi-metric optimization with

different levels of randomness in the individual metrics. Such a solution will give a frontier of

solution points.

• The game theoretic spatial clustering algorithm in its current form is capable of clustering

medium sized data sets. This is attributed to the non-linearincrease in the number of strategies

as the number of players increase. However, if better techniques are incorporated to aggressively

prune the strategy set, the algorithm would be able to cluster larger data sets.

• An alternative notion of applying the game theoretic methodto the clustering problem is to con-

sider the objectives as the players. It would be interestingto see the changes in the optimization
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performance, since the number of players in that scenario would be constant, but the strategy set

may be larger.

• The game theoretic clustering approach has several useful applications. One such application is

in the domain of ad-hoc and sensor networks. The ad-hoc networks need clusters to be formed

with the objective of minimizing inter- as well as intra-cluster communication. To satisfy these

requirements, each cluster designates one of the nodes as a gateway for inter-cluster communi-

cation and one node as a cluster head for intra-cluster communication. Game theoretic clustering

approach can be utilized to solve this clustering problem.
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